Production of OH and O radicals with $\mathrm{Air} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Air} / \mathrm{Ar} / \mathrm{H}_{2} \mathrm{O}$ atmospheric pressure gliding arc discharges plasma jet

N.C. Roy and M. R. Talukder

Plasma Science and Technology Lab, Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi-6205

In the recent years, atmospheric pressure plasma jets are drawing interest for their wide area of applications including water purification [1], agriculture [2], polymer surface modification [3] and so on. Many research groups deliver attention in the production of OH and O radical at atmospheric pressure [4, 5]
In this work, atmospheric pressure $\mathrm{Air} / \mathrm{H}_{2} \mathrm{O}$ and Air $/ \mathrm{Ar} / \mathrm{H}_{2} \mathrm{O}$ gliding arc plasmas are produced by a $250 \mathrm{~Hz}, 4-7 \mathrm{kV}$ dc pulsed power supply. The schematic diagram of the experimental setup is shown in Fig. 1.
This investigation reveals that Ar plays a significant role in the production mechanism of OH and O radicals. Plasma is characterized both electrically and optically (OES). The V-I curve reveals that the discharge current changes due to the contribution of species produced and power dissipation (~ 15 to 20 W). The relative intensity, rotational (T_{r}), gas (T_{g}), excitation ($T_{\text {exc }}$) temperatures and electron density $\left(n_{e}\right)$ are studied as a function of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that the generation of OH and O radicals are increased with increasing Ar content to the gas mixture and applied voltage as shown in Fig. 2. T_{r} is determined from $O H\left(A^{2} \Sigma^{+}\left(v^{\prime \prime}=0\right) \rightarrow X^{2}\left(v^{\prime}=0\right)\right)$ bands with the aid of LIFBASE spectroscopic simulation software. T_{g} and n_{e} are approximated from the Voigt fit of H_{β} line using Doppler and Stark broadenings, respectively. We found that $n_{e} \approx 10^{14} \mathrm{~cm}^{-3}$ and $T_{g} \approx 560-1180 \mathrm{~K}$ for different experimental conditions. n_{e} reveals that the higher densities of active species are produced in the discharge due to more effective electron impact dissociation of $\mathrm{H}_{2} \mathrm{O}$ and O_{2} molecules caused by higher kinetic energies as gained from enhanced electric field [4]. T_{x} is determined employing Boltzmann Plot method using $A r^{+}$lines. Analyzed result provides that T_{x} exists in the range from 4000 K to 7000 K .
The productions of OH and O are decreasing with increasing air flow rate but enhanced air flow rate significantly modifies discharge maintenance properties. On the other hand, Fig. 3 shows T_{g} significantly reduces with the enhanced air flow rate.

References

1. Y Yang, Y I Cho, and. A FridmanPlasma Discharge in Liquid, (CRC Press, Taylor and Francis, New York,) 2012.
2. N N Misra, O Schluter, PJ Cullen, Cold Plasma in Food and Agriculture, (Academic Press: Elsevier) 2008.
3. M. Thomas, K L Mittal, Atmospheric Presure Plasma Treatment of Polymer, (Scrivener Publishing: Wiley).
4.
5. A Nikiforov L Li, N Britun, R Snyders, P Vanraes and C Leys, Plasma Sources Sci. Technol. 23015015 (2014).
6. S Yonemori and R Ono, Biointerphases 10, 029514 (2015).

Fig. 1. Schematic of the experimental setup with discharge photograph

Fig.2. Relative intensity of $O H(A-X)$, and O radical as function of Ar addition at applied voltage 5 kV

Fig.3. Effect of applied voltage on T_{g} as a function of applied voltage with the changing of Air flow rate.

