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  Landau  damping  has  been  a  topic  of  long-standing
interest in  plasma physics. Waves in plasmas undergo
such collisionless damping when they resonantly interact
with   free  and/or  trapped   particles,  i.e.,  when  the
particle’s velocity approaches the wave phase velocity or
group  velocity  of  nonlinear  wave  envelopes.   Such
collisionless  linear  damping   was  first  theoretically
predicted by Landau in 1946  [1],  and later confirmed
experimentally by Malmberg and Wharton in 1964 [2].
In  this  context,  Ott  and  Sudan  [3]   theoretically
investigated the  linear Landau damping  of ion-acoustic
solitary  waves  in  electron-ion  plasmas  by  means  of  a
Korteweg de-Vries (KdV) equation. The theory was later
developed  by  a  number  of  authors  in  various  plasma
environments [4-7]. 
  On the other hand, Ichikawa [8] investigated the effects
of nonlinear Landau damping due to resonant particles
having  the  group  velocity  of   electrostatic  wave
envelopes  in  electron-ion  plasmas.  When  quantum
effects  are taken into consideration,  there appears  new
length scale and hence new coupling parameters and new
processes that come into the picture. In this scenario, the
typical  Vlasov-Poisson  system is  no  longer  applicable
and one has to deal with the Wigner-Poisson equations
[9]. 
  In this talk, we review some recent developments of the
theory  of  nonlinear  Landau  damping  of  electrostatic
wave  envelopes  in  classical  [6]  and  semiclassical  [7]
plasmas.  We  also  investigate  the  wave-particle
interaction of  electrostatic  waves in  a  fully  degenerate
plasma using the Wigner-Moyal equation coupled to the
Poisson  equation.  In  contrast  to  classical  and
semiclassical plasmas, the resonant velocity is found to
be  shifted  by  the  quantity  [9]  nħk/2m,  i.e.,
vn

res=ω/k±nħk/2m,  where n=1,2,3,...;   ħ  is  the  reduced
Planck’s constant, ω (k) is the wave frequency (number)
and m is the particle’s mass. It occurs due to the plasmon
energy and momentum. We focus on the regimes where
the linear Landau damping (one plasmon) is forbidden,
however,  two-  and  three-plasmon  resonances  can  be
important  in  the  nonlinear  wave-particle  interactions.
The  effects  of  these  plasmon  and  group  velocity
resonances  are  also  studied  on  electrostatic  wave
envelopes in quantum plasmas.    Using the   multiple
scale expansion technique, we show that the evolution of
wave envelopes is governed by a nonlinear Schrödinger
(NLS) equation with a nonlocal nonlinearity [6,7,9]. In
contrast  to  classical  [6]  and semiclassical  [7]  plasmas,
such  nonlocal  term  appears  due  to  the  three-plasmon
and    group velocity resonances. Furthermore, the local
cubic  nonlinear  term  is  also  modified  by  the  two-

plasmon and three-plasmon resonances.  The effects of
these  multiplasmon and group velocity  resonances  are
examined on the modulation  of  wave envelopes as well
as on the soliton solution of the NLS equation.   Finally,
applications  of  our  results  in  laboratory,  space  and
astrophysical  environments are discussed.  
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Fig. 1: Two parameter regimes  are shown: one where
both  the  multi-plasmon and group velocity  resonances
are  important  [subplots  (a)  and  (b)],  and  other  where
only  the  group  velocity  resonance  can  be  important
[subplot (c)].

B-I6


