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   The gyrokinetic theory is a basic framework to 
describe microinstabilities, turbulence, and resultant 
anomalous transport observed in magnetically confined 
plasmas. Nonlinear gyrokinetic equations for particle 
distribution functions were originally derived by 
recursive techniques combined with the WKB 
representation [1]. Modern gyrokinetic theories are based 
on the Lagrangian/Hamiltonian formulation using the Lie 
transformation to define the gyrocenter coordinates in 
which the motion equations exactly satisfy Liouville’s 
theorem and invariance of the magnetic moment [2]. 
Furthermore, in the gyrokinetic field theory [3], 
gyrokinetic Poisson and Ampère equations for turbulent 
electromagnetic fields are derived from the Lagrangian 
variational principle, and Noether’s theorem can be 
naturally applied to prove the energy conservation for the 
whole system.  
   The present paper reviews the gyrokinetic field 
theory which is extended to include effects of the 
evolution of background fields, Coulomb collisions, and 
large 𝐄×𝐁 and toroidal flows on the order of the ion 
thermal velocity [4]. We consider the toroidally rotating 
plasma confined in the axisymmetric background 
magnetic field 𝐁$. The gyrocenter motion equations for 
the charged particles and the equations for the 
background and turbulent electromagnetic fields are all 
derived from the variational principle 𝛿 𝐿'(
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  where the Lagrangian 𝐿  for the whole system is 
written as [4] 
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Here, 𝐹6(𝐙𝟎	
  , 𝑡$)  and 𝐿6  represent the particle 
distribution function at the initial time 𝑡$  and the 
single-particle Lagrangian for particle species a, 
respectively, and ℒ;  is the Lagrangian density 
associated with electromagnetic fields. The gyrocenter 
coordinates are denoted by 𝐙6 	
  = 	
   (𝐗6, 𝑈6, 𝜇6, 𝜉6) 
where 𝐗6, 𝑈6, 𝜇6, and 𝜉6 are the gyrocenter position, 
parallel velocity (observed from the toroidally rotating 
frame), magnetic moment, and gyrophase angle, 
respectively. 
   The gyrokinetic Boltzmann equation for the 
gyrocenter distribution function 𝐹6 is written as 
 
𝜕
𝜕𝑡
+
𝑑𝐙𝒂
𝑑𝑡

∙
𝜕
𝜕𝐙

𝐹6 𝐙, 𝑡 = 𝐶6I[𝐹6, 𝐹I] L
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where 𝑑𝐙6/𝑑𝑡  is given from the gyrocenter motion 

equations, ⋯ L  is the gyrophase average, 𝐹6  is 
assumed to be independent of the gyrophase 𝜉 , and 
𝐶6I[𝐹6, 𝐹I] represents the rate of change 𝐹6 due to the 
Coulomb collisions between particle species a and b. For 
the collisionless case, 𝐶6 ≡ 𝐶6II = 0, Eq.(2) reduces 
to the gyrokinetic Vlasov equation, for which Noether’s 
theorem can be applied to derive conservation laws of 
energy and toroidal momentum from symmetry 
properties. However, even for the collisional case, 𝐶6 ≠
0, we can still derive the energy and toroidal momentum 
balance equations from Noether’s theorem modified 
using the correspondence relation between 𝜕𝐹6R 𝜕𝑡 and 
𝜕𝐹6 𝜕𝑡 − 𝐶6 , where 𝐹6R	
  and 𝐹6  represent the solution 
of Eq. (2) for 𝐶6 = 0 and that for 𝐶6 ≠ 0, respectively 
[5].  
   Here, we follow Burby et al. [6] and use the Poisson 
bracket 	
  ∙	
  , ∙	
    to write the collision operator as 

𝐶6I 𝐹6, 𝐹I = −𝛼6I 𝑥6U, 𝛾U6I
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where 𝑥6U and 𝛾U6I are the ith Cartesian components of 
the particle position vector and the vector defined in 
[4,6], respectively, and 𝛼6I ≡ 2𝜋𝑒6\𝑒I\lnΛ. It is verified 
by using the collision operator defined in Eq.(3) that the 
total energy and toroidal momentum conservation laws 
are satisfied by the gyrocenter distribution functions and 
the electromagnetic fields which are obtained from 
solving the gyrokinetic system of equations. The derived 
conservation laws of particles, energy, and toroidal 
momentum are shown to simultaneously contain all 
classical, neoclassical, and turbulent transport fluxes 
which agree with the conventional results obtained from 
the recursive formulations. It is emphasized that the 
background 𝐄×𝐁 and toroidal flows can be determined 
by the toroidal momentum conservation law. In addition, 
discussions are made on the entropy production and on 
the momentum transport flux (or the viscosity tensor) 
derived from the invariance of the action integral under 
an arbitrary spatial coordinate transformation.   
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