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Helically deformed MHD equilibrium as lower-energy state via simulated
annealing
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A new method for calculating magnetohydrodynam-
ics (MHD) equilibrium, called simulated annealing, has
been developed recently. The method is based on Hamil-
tonian formulation of dynamics of ideal fluids including
ideal MHD. The dynamics of ideal fluids is described by
the Hamiltonian and the non-canonical Poisson brackets
[1, 2]. Namely, the system evolves according to the vector
field defined by the functional derivative of the Hamilto-
nian with an operation by the Poisson bracket. The anti-
symmetry of the Poisson bracket provides energy conser-
vation. Interestingly, the Poisson bracket also provides
Casimir invariants that are defined as the null space of the
Poisson bracket. Therefore the system evolves on a sur-
face specified by its energy and the Casimir invariants in
the corresponding phase space. The surface specified by
the values of the Casimir invariants is called the Casimir
leaf. An energy extremum on the Casimir leaf gives an
equilibrium[3, 4].

Here, let us consider an artificial dynamics derived
from the original ideal fluid system; the Poisson bracket
is operated twice in the artificial dynamics. Then the en-
ergy of the system changes monotonically while preserv-
ing the Casimir invariants. Then the artificial dynamics
will lead to the energy extremum on the Casimir leaf.
Therefore this artificial dynamics can be used as a new
method for calculating an equilibrium of the ideal fluids.
The equilibrium obtained by this method is characterized
by the values of the Casimir invariants. This idea was ap-
plied for two-dimensional vortical motion of neutral flu-
ids in [5, 6, 7]. The artificial dynamics derived by double
operation of the Poisson bracket is an example that re-
alizes monotonic change of the energy. More advanced
types of artificial dynamics have been also developed and
demonstrated for the neutral fluids [8], that are termed
simulated annealing (SA).

The same idea also applies MHD. So far, we have
successfully obtained equilibria, or stationary states, of
two-dimensional low-beta reduced MHD[9] by the SA
in a rectangular domain with doubly periodic bound-
ary conditions[10]. We have also developed a method
to specify the values of the Casimir invariants before
the SA calculation; those values are conserved during
the SA calculation[11]. Furthermore, we have extended
the code for a cylindrical plasma, where the interior of
the plasma can deform in three-dimensions although the
plasma shape is fixed to a cylinder[12]. The implicit
Runge-Kutta method was recently implemented as the
time stepper, which is symplectic and time-reversal sym-
metric. The implicit equation is solved by the Newton
method and the generalized minimal residual (GMRES)
method. Then the numerical stability is significantly
improved[13].

Because the SA decreases the energy of the system
monotonically, the obtained equilibrium has a lower en-
ergy compared to the initial condition. Therefore, if we
start the SA from a cylindrically symmetric state plus a
tiny helical perturbation, the system goes to a helically
deformed state if the cylindrically symmetric state is un-
stable, while the system comes back to the cylindrically
symmetric state if it is stable. An example of such a
helically deformed equilibrium is shown in [12], where
magnetic islands exist in the equilibrium. We have also
obtained some simulation results where the tiny pertur-
bation dies away when the cylindrically symmetric state
is stable. Such numerical results will be shown together
with the helically deformed equilibria in the presentation.
Especially the helically deformed equilibria of the inter-
nal kink type will be presented. Moreover, the effect of
the initial condition on the final equilibrium will be also
examined, because we have many choices of the tiny he-
lical perturbation that are on the same Casimir leaf.

Acknowledgement

The author thanks Prof. P. J. Morrison for a fruitful dis-
cussion. This work was supported by JSPS KAKENHI
Grant No. 15K06647.

References

[1] P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45,
790 (1980).

[2] P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).
[3] M. D. Kruskal and C. R. Oberman, Phys. Fluids 1,

275 (1958).
[4] V. I. Arnol’d, Prikl. Math. Mech. 29, 846 (1965),

[English transl. J. Appl. Maths Mech. 29, 1002–
1008 (1965)].

[5] G. K. Vallis, G. F. Carnevale and W. R. Young, J.
Fluid Mech. 207, 133 (1989).

[6] G. F. Carnevale and G. K. Vallis, J. Fluid Mech. 213,
549 (1990).

[7] T. G. Shepherd, J. Fluid Mech. 213, 573 (1990).
[8] G. R. Flierl, P. J. Morrison, Physica D 240, 212

(2011).
[9] H. R. Strauss, Phys. Fluids 19, 134 (1976).

[10] Y. Chikasue and M. Furukawa, Phys. Plasmas 22,
022511 (2015).

[11] Y. Chikasue and M. Furukawa, J. Fluid Mech. 774,
443 (2015).

[12] M. Furukawa and P. J. Morrison, Plasma Phys. Con-
trol. Fusion 59, 054001 (2017).

[13] M. Furukawa, The 72th Annual Meeting, The Phys-
ical Society of Japan, 2017, 18aC34-5.

F-O6


