Brilliant gamma-ray emission from near-critical plasma interaction with ultraintense laser pulses

B. Qiao

Center for Applied Physics and Technology, Peking University

 γ -ray is the electromagnetic radiation having the highest photon energy and smallest wavelength, which has a broad range of applications in industry, material science, nuclear physics, astrophysics and so on. In this talk, I shall report on recent progresses on studies of laser-driven brilliant gamma-ray radiation at Peking University (PKU). The PKU research team has carried out a series of theoretical and numerical studies [1-5] on brilliant γ -ray radiation production by using near-critical plasmas interaction with intense circularly polarized (CP) lasers. In this regime, a novel resonant acceleration scheme can be achieved [1, 2] for generating dense relativistic electron bunches and emitting brilliant γ -ray pulses, where the laser frequency matches with that of electron betatron oscillation under quasistatic electromagnetic fields in plasma. 3D PIC simulations show that brilliant γ -ray radiation with energy of 3J and brightness of 10^{24} photons/s/mm²/mrad²/0.1%BW (at 3MeV) can be produced by using CP lasers at intensity 10^{22} W/cm². It is found [3, 4] that the total number of radiated photons scales as $a^{2}/(S)^{1/2}$ and the conversion efficiency scales as a^{3}/S , where $S=(n_e/n_c)a$ and a is the laser normalized amplitude. Further studies show [4,5] that if the laser intensity is increased to 10²³W/cm², the quantum electrodynamic (QED) effects are in favor of trapping and achieving resonance acceleration of electrons, resulting in production of brilliant γ -ray pulses with unprecedented power of 6.7PW and brightness of 10²⁵photons/s/mm²/mrad²/0.1%BW (at 15MeV). To the best of our knowledge, this is the γ -ray source with the highest peak brightness in tens-MeV regime ever reported in the literature.

[1] B. Liu et al., X. T. He, PRL 110, 045002 (2013).

- [2] B. Liu et al., X. T. He, PoP 22, 080704 (2015).
- [3] H. X. Chang, B. Qiao et al., PRE 92, 053107 (2015).
- [4] H. X. Chang, B. Qiao et al., Sci. Rep. accepted (2017).
- [5] T. W. Huang, C. T. Zhou, B. Qiao et al., APL 110, 021102 (2017).