Exploring the Regime of Validity of Global Gyrokinetic Simulation with Spherical Tokamak Plasmas

Y. Ren1, W. Wang1, W. Guttenfelder1, S.M. Kaye1, S. Ethier1, R.E. Bell1, B.P. LeBlanc1, E. Mazzucato1, D.R. Smith2, C.W. Domier3, H. Yuh4 and the NSTX-U Team

1Princeton Plasma Physics Laboratory, USA, 2University of Wisconsin-Madison, USA, 3University of California at Davis, USA, 4Nova Photonics, Inc., USA

Plasma turbulence is considered one of the main mechanisms for driving anomalous thermal transport in magnetic confinement fusion devices. Based on first-principle model, gradient-driven gyrokinetic simulations have often been used to explain turbulence-driven transport in present fusion devices, and in fact, many present predictive codes are based on the assumption that turbulence is gradient-driven. However, using the electrostatic global particle-in-cell Gyrokinetic Tokamak Simulation (GTS) code \cite{1}, we will show that while global gradient-driven gyrokinetic simulations provide decent agreement in ion thermal transport with a set of NBI-heated NSTX H-mode plasmas (see Fig. 1), they are not able to explain observed electron thermal transport variation in a set of RF-heated L-mode plasmas, where a factor of 2 decrease in electron heat flux is observed after the cessation of RF heating \cite{2}. Thus, identifying the regime of validity of the gradient-driven assumption is essential for first-principle gyrokinetic simulation. This understanding will help us more confidently predict the confinement performance of ITER and future magnetic confinement devices.

\textbf{Acknowledgments}

This work was supported by the U.S. Department of Energy under Contracts No. DE-AC02-76CH03073, No. DE-FG03-95ER54295, and No. DE-FG03-99ER54518. The computational resource is provided by NERSC.

\textbf{References}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Red circles: ion energy flux, Q_{GTS}, at $t=332$ ms as a function of major radius from a nonlinear GTS simulation of an NSTX H-mode plasma, shot 141767; magenta band: radial profile of experimental ion heat flux, Q_{exp}, at $t=332$ ms from power balance analysis; black band: radial profile of neoclassical ion heat flux, Q_{nc}. Note that the vertical widths of the magenta and black bands denote the experimental uncertainties. Q_{GTS} is averaged over a quasi-steady saturation period, and the errorbars of Q_{GTS} are the standard deviation of Q_{GTS} in the averaging time period. Also note that, at larger radius, i.e. $R \geq 136$ cm, taken into account of uncertainties in each term, $Q_{\text{GTS}}+Q_{\text{nc}}$ is approximately equal to Q_{exp}, indicating that the ion-scale turbulence is responsible for observed anomalous ion thermal transport.}
\end{figure}