Reverse Trend of Turbulent Transport Coefficients in Strong Gradient Fusion Plasmas

Yong Xiao

Institute for Fusion Theory and Simulation, Zhejiang University, China

It is of great interest to study the turbulent transport under strong plasma gradient, which is a prominent feature of the typical pedestal plasma. First principle gyrokinetic simulation of the turbulent transport under strong gradient using the GTC code with HL-2A experiment parameters finds that the turbulent transport coefficient decreases with the applied gradient, which is contradictory to the conventional wisdom for the transport coefficient trend under weak gradient [1]. This extraordinary behavior is not related to the zonal flow regulation. Instead it is found to stem from the eigenmode structure change under strong gradient [2,3], where the most unstable micro-instabilities are non-ground eigenstates with unconventional mode structures [2,4,5] which significantly reduce the effective correlation length and thus reverses the transport trend. Both linear and nonlinear critical gradients are found to exist, which contributes to such non-monotonical transport behavior [3]. In addition, the frequency from the simulation agrees with the HL-2A experiment [6]. By including the inverse cascade effect during the nonlinear saturation, the nonlinear poloidal spectrum can also match the experimental observation.

References