Nonlinear simulations of toroidal Alfvén eigenmodes in the presence of tearing modes

J. Zhu*

Institute for Fusion Theory and Simulation,
Zhejiang University, Hangzhou, Zhejiang 310027, China

Z. W. Ma,† S. Wang,‡ and W. Zhang§

Institute for Fusion Theory and Simulation,
Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract

A hybrid simulation is carried out to study nonlinear dynamics of $n = 1$ toroidal Alfvén eigenmodes (TAEs) with the $m/n = 2/1$ tearing mode (TM) evolved. It is found that $n = 1$ TAE is excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the $n = 1$ TAE, the mode continuously grows and reaches second steady state due to multiple tearing mode-mode nonlinear coupling, especially, the $n = 0$ component plays a very important role in tearing mode saturation. Furthermore, strong low frequency tearing mode activities make the TAE frequency chirping structure weak due to tearing mode resonances spreading in phase space.

*Electronic address: zhu.jia@live.com
†Electronic address: zwwma@zju.edu.cn
‡Electronic address: zjuws@163.com
§Electronic address: aiyuwen111@163.com