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Plasma response to the resonant magnetic perturbation 

(RMP) field is numerically investigated by an extended 

toroidal fluid model, which includes anisotropic thermal 

transport physics parallel and perpendicular to the total 

magnetic field. 

The thermal transport is found to be effective in 

eliminating the toroidal average curvature induced 

plasma screening (the so called Glasser-Green-Johnson, 

GGJ screening) at slow toroidal flow regime, whilst 

having minor effect on modifying the conventional 

plasma screening regimes at faster flow. This physics 

effect of interaction between thermal transport and GGJ 

screening is attributed to the modification of the radial 

structure of the shielding current, resulted from the 

plasma response to the applied field. The modification of 

the plasma response (shielding current, response field, 

plasma displacement and the perturbed velocity) also has 

direct consequence on the toroidal torques produced by 

RMP. Modelling results show that thermal transport 

reduces the resonant electromagnetic torque as well as 

the torque associated with the Reynolds stress, but 

enhances the neoclassical toroidal viscous torque at slow 

plasma flow. 
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Fig.1 Comparison of the computed plasma response 

amplitude for the m/n=2/1 resonant harmonic of the flux 

associated with the perturbed radial magnetic field, with 

(a) or without (b) the thermal transport terms (TTT). The 

normalized thermal transport coefficients in (b) is 

assumed to be 𝜒⊥ = 10−2, 𝜒∥ = 105. Ω is the toroidal 

rotation frequency of the plasma at the q=2 surafce. S is 

the Lundquist number. 
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