Transport analysis of EAST long-pulse H-mode discharge

with Integrated Modeling

M.Q.Wu^{1,2,*}, G.Q.Li¹, J.L.Chen¹, X.Jian³, Vincent Chan¹, K.Li^{1,2}, X.Zhu^{1,2}, H.Lian^{1,2}, H.Qu^{1,2}, H.F.Du¹, J.P.Qian¹, X.Z.Gong¹, Q.Zang¹, Y.M.Duan¹, H.Q.Liu¹, B.Lyu¹, S.Y.Ding¹, C.K.Pan¹, Q.L.Ren¹, X.Gao¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China

²University of Science and Technology of China, Hefei, 230026, China

³State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

**E-mail: wumuquan@ipp.ac.cn*

In the 2016 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than one minute has been obtained using only Radio Frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H_{98y2}~1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2MW LHW, ~0.3MW ECH and ~1.1MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (Ip~0.45 MA) and electron density are kept constantly and the simulated plasma current density profile is compared with that constrained by far-infrared polarimeter/interferometer. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~30%, the RF drive current is ~70%. Electron energy transport is shown to be dominated by turbulence transport. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments, also increase our confidence for ITER and CFETR design and simulations.