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Disruptive Heat load Simulation using TSC on EAST 
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Tokamak Simulation Code (TSC) is widely used for the 

simulation of plasma discharge and the design of new 

physical experiments [1-5]. The code is based on a 

numerical model of axisymmetric tokamak plasma and 

associated control system, which simulates the time 

evolution of two-dimensional time dependent plasma 

with free boundary by solving the MHD equations on a 

rectangular computational grid [6]. In this study, TSC is 

employed to simulate the disruptive discharge of 

Experimental Advanced Superconducting Tokamak 

(EAST). Disruption leads to enormous thermal loads on 

the plasma facing components (PFCs), halo current and 

electromagnetic force on the conductor parts, and 

runaway electrons to the PFCs. Heat loads due to the 

thermal quench (TQ) and runaway electrons cause great 

damage to PFCs[7,8]. According to transport across large 

magnetic island, the anomalous transport was adjusted to 

model the disruption and research the heat load on 

divertor. The surface temperature of the divertor was 

measured by the infrared (IR) camera on EAST, and the 

heat flux on the divertor was calculated based on the IR 

data. The model results of plasma current, loop voltage, 

plasma density, heat load on divertor were compared 

with experimental disruptive data. 
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