Solar wind pressure sudden change and the geospace response


1 Institute of Space Science, School of Space Science and Physics, Shandong University, Weihai, Shandong, China, 2School of Earth and Space Science, Peking University, Beijing, China, 3Atmospheric, Oceanic, and Space Sciences Department, University of Michigan, Ann Arbor, Michigan, USA, 4Earth and Space Sciences Department, University of California, Los Angeles, California, USA, 5Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire, USA, 6Space Science Institute, School of Astronautics, Beihang University, Beijing, China, 7Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

In this presentation we will introduce our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. The global processes are summarized as follows.

1. A sudden change of the solar wind dynamic pressure can induce a pair of vortex in the dawn and dusk, and they are propagating tailward. 2. The sense of rotation is different in the dawn and dusk, and different for solar wind dynamic pressure increase and decrease. 3. These vortices can connect to the ionospheric vortices through FAC. 4. And this FAC is like region I sense for pressure increase case, and Region II sense for the pressure decrease case.5. Sometimes, the vortex can be related to ULF waves and aurora.

We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.

References


