# The electron orbit which considered the Planck constant in the atomic shell 

S. Shimamoto ${ }^{1}$, Y. Takemoto ${ }^{1}$<br>${ }^{1}$ Department of Mechanical and Electrical Engineering, Nippon Bunri University<br>e-mail:shimamoto@nbu.ac.jp

In this paper, we propose the angular moment of electron is always constant in the atomic shell [1],[2].

The first electron around the n-proton with $Q\left(=n Q_{e}\right)$ charge. Figure 1 shows the image diagram of the orbit of first electron.

We assume the angular moment is the same value as the Planck constant and the orbit is a circle.
(i) By the balance in the circle
$\frac{m_{e} v^{2}}{r}=\frac{k_{0} Q_{e} Q}{r^{2}}\left(=\frac{n k_{0} Q_{e}^{2}}{r^{2}}\right) \quad \therefore m_{e} r v^{2}=n k_{0} Q_{e}{ }^{2}$
where $Q_{e}$ is elementary charge, $m_{e}$ is electron mass, $k_{0}$ is Coulomb constant, $r$ is orbit radius, $v$ is speed, $n$ is number.
$\therefore\left(\frac{v}{\mathrm{C}}\right)^{2}=\frac{n k_{0} Q_{e}{ }^{2}}{m_{e} r \mathrm{C}^{2}}=\frac{n R_{0}}{r}, R_{0}=\frac{k_{0} Q_{e}{ }^{2}}{m_{e} \mathrm{c}^{2}}$
where c is light velocity, $R_{0}$ is minimum radius of charge. It corresponds to the Schwarzschild radius of gravity theory.
(ii) Using the angular moment by the hypothesis.
$\hbar\left(=m_{e} r_{1} u_{1}\right) \fallingdotseq m_{e} r_{1} v_{1} \quad \therefore v_{1}=\frac{h}{2 \pi m_{e} r}, u_{1}=\frac{v_{1}}{\sqrt{1-\left(\frac{v_{1}}{c}\right)^{2}}}$
where $h$ is Planck constant, $\hbar$ is Dirac constant, $u_{1}$ is relativistic speed [1].

By the relation (i),(ii). We can get the Bohr radius and speed.
$\frac{n R_{0}}{r}\left[=\left(\frac{v}{\mathrm{c}}\right)^{2}\right]=\left(\frac{\hbar}{m_{e} r \mathrm{C}}\right)^{2} \quad \therefore r=\frac{1}{n} \frac{\hbar^{2}}{m_{e}^{2} \mathrm{c}^{2} R_{0}}=\frac{1}{n} r_{1}$
$r_{1}=\frac{h^{2}}{4 \pi^{2} m_{e}{ }^{2} c^{2} R_{0}}=\frac{\hbar^{2}}{\pi m_{e} k_{0} Q_{e}{ }^{2}}=5.29166 \times 10^{-11}$
$v=\frac{\hbar}{m_{e} r}=n \frac{\hbar}{m_{e} r_{1}}=n v_{1}$
where $r_{1}$ is Bohr radius, $v$ is speed.
Then, the energy $E$ of the electron around the

$$
\begin{align*}
& \text { proton is } \\
& \qquad \begin{array}{l}
E=m_{e} c C_{0}=\frac{m_{e} c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} e^{-\frac{n R_{0}}{r}}=\frac{m_{e} c^{2}}{\sqrt{1-\left(\frac{n v_{1}}{c}\right)^{2}}} e^{-\frac{n^{2} R_{0}}{r_{1}}} \\
=m_{e} c^{2}\left(1+\frac{1}{2} \frac{n^{2} R_{0}}{r_{1}}+\cdots\right)\left(1-\frac{n^{2} R_{0}}{r_{1}}+\cdots\right) \\
=m_{e} c^{2}\left(1-\frac{n^{2}}{2} \frac{R_{0}}{r_{1}}+\cdots\right)
\end{array}
\end{align*}
$$

Therefore, the formula of the n-th ionization energy $X^{+(n-1)} \rightarrow X^{+n}$ is
$N_{A}\left(m_{e} \mathrm{c}^{2}-E\right) / 1000$
$=N_{A}\left(m_{e} \mathrm{c}^{2}-\frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{n v_{1}}{\mathrm{c}}\right)^{2}}} \mathrm{e}^{-\frac{n^{2} R_{0}}{r_{1}}}\right) / 1000$
$=1312.7 \times n^{2}$
where $N_{A}=6.02214 \times 10^{23}$ is the Avogadro number and $X^{+n}$ means the bare atomic nucleus.

In the case of hydrogen, the orbit shape is an elliptic orbit. The solutions of the "orbit equation" is follow equation:

$$
\begin{equation*}
\left(\frac{d \frac{1}{r}}{d \Phi}\right)^{2}=-\frac{\mathrm{c}^{2}}{C^{2}}+\frac{C_{0}^{2}}{C^{2}} e^{2 \frac{R_{0}}{r}}-\frac{1}{r^{2}} \tag{8}
\end{equation*}
$$

where $\Phi$ is relativistic angular, $C$ is the area speed constant, $C_{0}$ is the speed constant for energy function. It is calculated that the radius are $r_{1}=5.16491 \times 10^{-11}$ (perihelion) and $r_{2}=5.42420 \times 10^{-11}$ (aphelion).

Here, $E=m_{e} \mathrm{c} C_{0}=1312.0 / 1000 \times N_{A}$ is an orbit energy and $C=r_{1} v_{1}=1.15768 \times 10^{-4}$ is a speed of area. Therefore the orbital eccentricity is 0.0244865 . Table 1 shows ionization energy (as called I. E.) and calculated I. E. radius.

The electron move on the resonance orbit which is expressed by the angular moment (or Planck constant) of the electric field. Temperature is the frequency of light which has been caused by acceleration amount.


Figure 1 The image diagram of the orbit of first electron.

## References

[1] Y. Takemoto, S. Shimamoto, The Orbit of the Electron and the Maxwell Equation, Bull. of NBU, Vol.
41, No. 2 (2013-Oct.), p.p. 1-11.
[2] Y. Takemoto, S. Shimamoto, The Boltzmann constant, the Planck constant and the Temperature, Bull. of NBU, Vol. 44, No. 2 (2016-Oct.), p.p. 55-65.

