Understanding the start of pulsed discharges in atmospheric air with 3D particle simulations

An-Bang Sun
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, China
e-mail: anbang.sun@xjtu.edu.cn

Abstract
Pulsed discharges are widely used for many applications, such as plasma assisted ignition/combustion, water/gas cleaning and ozone generation.

We study the properties of “inception clouds” and “streamers”. Streamers are thin ionized channels that can propagate into non-ionized regions, due to the electric field enhancement at their tips. They typically form at higher pressures (e.g., atmospheric pressure). Streamers are strongly non-linear, as they propagate due to space charge. Streamer discharge is a precursor to lightning, also is an important initial stage of long-gap discharge between high-voltage transmission lines. We present a 3D particle model that has been developed recently to simulate streamer discharges. Advanced numerical techniques that are used in the code will be shown in detail. These techniques might be of general interest for researchers doing particle simulations, especially those who have to consider space charge effects. Selected results will be represented, i.e., streamers incepted from a needle electrode (Fig. 1), overlapping avalanches in an overvolted gap (Fig. 2), splitting of positive streamers induced by external background ionization or magnetic field. Our results help to answer fundamental questions about pulsed discharges.

Acknowledgement
This work is supported by the National Natural Science Foundation of China (Grant No. 51777164), the Young Talent Plan of Xi’an Jiaotong University (Grant No. DQ1J008), State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE17311) and the Fundamental Research Funds for the Central Universities, China (Grant No. 1191329723).

References