Derivation and application of the fully magnetized kinetic equations

C. Dong1,2, D. Li1,2,3, W. Zhang1,2,3, J. Cao1,2

1. Institute of Physics, Chinese Academy of Sciences, Beijing
2. University of Chinese Academy of Sciences, Beijing
3. University of Science and Technology of China, Hefei

Email: dli@cashq.ac.cn

In the magnetized and laser fusion plasma, space and astrophysical plasma, the particles’ gyro-radii can be smaller than the Debye length when there is a strong magnetic field. This will have a significant influence on collision dynamics and many physical processes such as parallel velocity slowing down, temperature relaxation, particle diffusion, thermal transport, and so on..

The fully magnetized Fokker-Planck equation is derived by including a uniform magnetic field in the collision term as follows:

\[
\frac{\partial f_a(v_\alpha, \tau)}{\partial \tau} + \Omega_\alpha v_\alpha \times \hat{e}_z \cdot \frac{\partial f_a(v_\alpha, \tau)}{\partial v_\alpha} = - \frac{\partial}{\partial v_\alpha} \cdot [(\Delta V_\alpha) f_a(v_\alpha, \tau)] + \frac{1}{2} \frac{\partial^2}{\partial v_\alpha \partial v_\alpha} \cdot [(\Delta V_\alpha \Delta V_\alpha) f_a(v_\alpha, \tau)]
\]

Where the magnetized Fokker-Planck coefficients \((\Delta V_a)\) and \((\Delta V_\alpha \Delta V_\alpha)\) have been derived explicitly within the binary collision model and the fully magnetized Landau equation is obtained:

\[
\frac{\partial f_a(v_\alpha, \tau)}{\partial \tau} + \Omega_\alpha v_\alpha \times \hat{e}_z \cdot \frac{\partial f_a(v_\alpha, \tau)}{\partial v_\alpha} = \frac{\partial}{\partial v_\alpha} \cdot \sum_{\beta} \frac{q_\alpha^2 q_\beta^2}{m_\alpha} \int_{-\infty}^{\tau} dt_1 \int d^3k \int d^3v_\beta \\
\times \Phi_\beta(k) \exp\left[i \cdot (H_\alpha(t_2) - H_\alpha(0)) \cdot v_\alpha \right] - i k \cdot [H_\beta(t_1) - H_\beta(0)] \cdot v_\beta - i \omega(t - t_1) \right] \\
\times \left(\frac{1}{m_\alpha} \frac{\partial}{\partial v_\alpha} - \frac{1}{m_\beta} \frac{\partial}{\partial v_\beta} \right) [f_a(v_\alpha, \tau) f_\beta(v_\beta, \tau)]
\]

It is shown that the impact of strong magnetic field is significant on transport processes such as stopping power and temperature relaxation etc.

References

* Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.