Intrinsic parallel current generation from ETG turbulence in a cylindrical plasma

Rameswar Singh1, Ozgur D Gurcan2, P H Diamond1, P K Kaw3† and R Singh4

1 CASS, UCSD, California 92093 \quad 2 LPP, Ecole Polytechnique, France, 91128 Palaiseau Cedex \quad 3 Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujrat \quad 4 National Fusion Research Institute, Daejeon

e-mail (speaker): rameswarsingh@gmail.com

The mean axial current in a cylindrical plasma is shown to obey a collisional advection diffusion equation. In addition to turbulent diffusion of large scale electron momentum due to small scale turbulence, a negative turbulent viscosity appears, coming from $\langle k_x k_y \rangle$ symmetry breaking\cite{Li2016}, the likely source of which is an initial seed current shear. Note that the current shear creates an asymmetry in the growth rate, and therefore a corresponding asymmetry in the fluctuation spectrum. When the negative turbulent viscosity exceeds the ambient positive diffusivity, the axial current shear goes modulationally unstable, leading to generation of intrinsic current in a current less non-inductive linear device. This modulational instability mechanism of intrinsic current in linear device is fundamentally different from the intrinsic current generation via $\langle k_x \rangle$ symmetry breaking in tokamak pedestal\cite{Singh2017, McDevitt2014}.

References

† Deceased 18 June 2017