2nd Asia-Pacific Conference on Plasma Physics, 12-17,11.2018, Kanazawa, Japan

Negotiating with magnetic self-organization in confined plasmas

Susanna Cappello¹, Veranda M¹, Bonfiglio D¹, Di Giannatale G¹, Escande DF², Agostini M¹, Auriemma F¹, Borgogno D³, Chacon L⁴, Fassina A¹, Franz P¹, Gobbin M¹, Grasso D⁵, Puiatti ME¹, Scarin P¹, Spizzo G¹

¹ Consorzio RFX, ² Aix-Marseille Univ, CNRS, ³ Dipartimento di Energia, Politecnico di Torino, ⁴ Los Alamos National Laboratory, ⁵ Istituto dei Sistemi Complessi-CNR e-mail (speaker): susanna.cappello@cnr.it

Abstract.

Magnetically confined plasmas of fusion interest display phenomena that find several analogies in astrophysics and other complex systems. This is the case of toroidal pinches where magnetic self-organization molds the plasma into a peculiar helical shape when the ratio of plasma current to toroidal magnetic flux exceeds the socalled Kruskal-Shafranov limit. In this case, a core kink instability ("sawtoothing" and/or "snake") tends to develop in Tokamaks¹. Similarly, a global helical shape (so-called Quasi Single Helical, QSH, regimes) forms in Reversed Field Pinch experiments (RFP)^{2,3}, helically modulating the plasma up to the edge^{4,5}. MHD modeling has been largely successful in capturing the basic features of such a phenomenon 6,7,8 , quite evading the famous Taylor's relaxation theory for RFP 9,10 . Nearly periodic relaxation events involving current sheet reconnection can be observed ^{6,9}, together with a magnetic chaos healing effect when the helical states are robustly achieved^{11,8}. The latter effect is presently the best candidate to explain the formation of internal electron transport barriers² observed in RFP helical regimes. In particular, "hidden" magnetic field lines transport barriers have been recently detected in experimental-like numerical simulations, which are associated with "fine" topological structures like Cantori sets or Lagrangian Coherent Structures ¹². After summarizing these general features, we here discuss the recent successful MHD prediction of alternative helical regimes, obtained by seed edge magnetic perturbations with suitable choice of helical pitch. A first set of RFXmod experiments substantially confirms modeling predictions ¹³. The new helical regimes obtained as plasma response to edge Magnetic Perturbations are predicted to favor magnetic chaos healing in the case of non-resonant seeds. After first indications obtained in RFX-mod experiment ¹³, we expect to validate modeling predictions concerning transport properties in the modified device RFX-mod2 starting operation in 2020. The device, characterized by reduced plasma-wall/feedback coils distance, will provide efficient control action in order to negotiate at best with RFP helical magnetic self- organization.

References

- ¹A Wingen et al Nucl. Fusion 58 036004 (2018)
- ² R Lorenzini et al, Nature Physics 5, 570 (2009)
- ³ J S Sarff et al., Nuclear Fusion 53, 104017 (2013)
- ⁴ N. Vianello et al Nucl. Fusion 53 073025 (2013)
- ⁵G. Spizzo et al Nucl. Fusion 57 126055 (2017)
- ⁶ S Cappello and D Biskamp, Nucl. Fus. 36 571 (1996)
- ⁷ S Cappello et al., Phys. Rev. Let. 85, 3838 (2000)
- ⁸ D Bonfiglio et al., Phys. Rev. Let. 111, 085002 (2013)
- ⁹ S Cappello, Plas. Phys. Contr. Fus. 46 B313 (2004)
- ¹⁰ S Cappello et al, Varenna-Lausanne Theory of Fusion
- Plasmas, AIP Conf. Proc. 1069, 27 (2008)
- ¹¹ DF Escande et al., Phys. Rev. Let. 85, 3169 (2000)
- ¹² G Rubino et al Plas. Phys. Contr. Fus. 57 85004 (2015)
- ¹³ M Veranda et al., Nucl. Fusion 57, 116029 (2017)

Helical self-organization in Reversed Field Pinch. Pictorial view of plasma displacement obtained in experimental-like 3D nonlinear MHD numerical modelling.