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For decades, the numerical violation of conservation 
laws has been one of the big issues on kinetic plasma 
simulations. Recently, we have developed a relativistic 
Vlasov–Maxwell scheme that can strictly maintain the 
conservation laws of charge, momentum and energy at 
the round-off level [1]. When constructing the algorithm, 
the mathematical formulae of product rule, 
integration-by-parts and commutative rule of partial 
differential operators should be preserved, even in the 
discrete level. 
   The conservation property is also important when the 
binary collision is included in kinetic simulations. In 
particle-in-cell simulations, the conservation laws of 
momentum and energy cannot be maintained strictly if 
the collided particles have different weights. In the 
rejection method of Nanbu and Yonemura, both 
momentum and energy are not conserved owing to the 
statistic errors [2]. In the marging method of Sentoku and 
Kemp, the momentum conservation is violated although 
the law of energy conservation is strictly maintained [3]. 
On the other hand, some conservative schemes have 
been developed for the Vlasov simulation. In the 
gyrokinetic simulations, a conservative collision operator 
was constructed by Satake et al. while the Fokker–
Planck collision terms are linearized because of the huge 
computational costs [4]. Recently, Taitano et al. 
developed a fully conservative scalable scheme for the 
Landau–Fokker–Planck equation without any 
linearization [5]. They discretized the Rosenbluth 
potential [6] rather than the Landau–Fokker–Planck 
equation so that the computational costs required to 
calculate the collision karnel is reduced dramatically. 
The Rosenbluth potential is strongly depends on the delta 
function which is hardly to be dealed with in numerical 
simulations. They introduced some kind of error factors 
to the fluxes in momentum space that can recover the 
conservation property. 
   In this work, the fully conservative scalable 
algorithm is extended to the relativistic Landau–Fokker–
Planck equation. A potential form of the relativistic 
Landau–Fokker–Planck equation was proposed by 
Braams and Karney [7]. If the numerical solution of the 
relativistic potential is obtained, one can construct a fully 
conservative scheme with the similar way of Ref. [5]. 
However, the potential equation is described as an 
elliptic partial differential equation in general form: 
 

 
 
In a numerical simulation including mixed derivatives, 
the numerical solution diverges without a scheme which 
can maintain monotonicity [8]. Moreover, the linear 
equation corresponding to the elliptic equation has a 
non-diagonal dominant matrix. Usually, a multigrid 
method uses, for example, the Gauss–Seidel method as a 
smoother, which is applicable only to diagonal dominant 
matrices. We implemented one of the Arnoldi method as 
a smoother, so the elliptic equation in general form can 
be solved by a scalable algorithm (Fig. 1). We will 
construct a fully conservative scalable scheme for 
relativistic Landau–Fokker–Planck equation by using 
these tools. 
 
 
References 
[1] T. Shiroto et al., arXiv, 1802.07238 (2018). 
[2] K. Nanbu and S. Yonemura, J. Comput. Phys. 145, 
639 (1998). 
[3] Y. Sentoku and A.J. Kemp, J. Comput. Phys. 227, 
6846 (2008). 
[4] S. Satake et al., Plasma Fusion Res. 3, S1062 (2008). 
[5] W.T. Taitano et al., J. Comput. Phys. 297, 357 (2015). 
[6] M.N. Rosenbluth et al., Phys. Rev. 107, 1 (1957). 
[7] B.J. Braams and C.F.F. Karney, Phys. Rev. Lett. 59, 
1817 (1987). 
[8] A.A. Samarskii et al., Comput. Math Appl. 44, 501 
(2002). 
 

 
 
Figure 1. Weak scaling of multigrid method for stiff 
non-diagonal dominant matrices.
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