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  Magnetohydrodynamics (MHD) is one of the most 
prevalent plasma models that can explain a variety of 
phenomena in astrophysics as well as in fusion. However, 
MHD can only describe “overall” dynamics of plasma, 
and it fails when microscopic effects are important. To 
overcome this drawback, MHD was extended by 
including various microscopic effects, such as the Hall 
effect [1] and the electron inertia effect [2]. Extended 
MHD (XMHD) [3] is a unified model that includes both 
the Hall and electron inertia effects.  
  In most astrophysical systems, plasma has relativistic 
temperature and flow speed. Hence, consideration of 
relativistic effects is essential; indeed, relativistic MHD 
has been used in a number of studies on high energy 
astrophysics. However, once again, the missing 
microscopic effects in the relativistic MHD imposes a 
limitation on its applicability. Recently, the relativistic 
version of XMHD was proposed [4]. However, despite of 
the potential usefulness of the model, there are only a few 
studies that employed the relativistic XMHD (e.g., [5]). 
  In this presentation, we will show (1) the action 
formalism of the relativistic XMHD and (2) some of the 
physical properties that are specific to the relativistic 
XMHD, viz., collisionless reconnection and linear wave 
properties [6,7]. 
  The relativistic XMHD was originally formulated via 
imposing a charge neutrality in a proper frame to the two-
fluid equations. However, we do not know whether the 
relativistic XHMD derived through such a way has 
Hamiltonian properties. We developed two types of the 
action principles (APs) for the relativistic XMHD: the 
constrained least AP [8] and the covariant bracket AP 
[9,10]. The first is minimization of the action under the 
constraints of density, entropy, and Lagrangian label 
conservation, i.e., 𝛿𝑆#$%&'()*%+, = 0. This AP not only 
yields the relativistic XMHD but also provides a Clebsch 
representation for a generalized momentum and a 
generalized vector potential. The other AP is a 
noncanonical covariant bracket AP; {𝐹, 𝑆2%#$%&'()%+,} =
0, where {, } is a noncanonical Poisson bracket, and 𝐹 
is an arbitrary functional. In this AP, the action is free of 
constrains while the constrains are implemented in the 
degeneracy of the Poisson bracket. We found that these 
two APs are connected via variable transformation from 
the Clebsch potential to the physical fields variables. 
Moreover, most of the other magnetohydrodynamic 
models (e.g., nonrelativistic Hall MHD and relativistic 
ideal MHD) can be derived by imposing appropriate limits 
to the XMHD action. 

  Next, we show some of the properties of relativistic 
XMHD. By assuming the massless electrons, relativistic 
XMHD is reduced to the relativistic Hall MHD. In this 
model, the induction equation is written as 

𝜕5𝐁⋆ + ∇ × (𝐁⋆ × 𝐯) = 0, 
where 𝐁⋆ = 𝐁 + ∇ × (−𝑑*ℎ+𝛾𝐯 + 𝑑*BℎC𝑱/𝑛) , 𝑑*  is the 
ion skin depth, ℎ+ is the electron thermal enthalpy, and 
𝛾 is the Lorentz factor of the flow speed. This equation 
indicates the violation of the frozen-in magnetic flux 
condition, and instead, a flux determined by a generalized 
field 𝐁⋆ is conserved. More interestingly, if the electron 
temperature is sufficiently large, collisionless 
reconnection may occur in the ion skin depth scale. A 
similar result was obtained for the relativistic pair plasma 
[6]. 
  We also found interesting properties of linear wave 
propagation. Figure 1 shows a group velocity surface for 
the nonrelativistic and relativistic Hall MHD with the 
same 𝑑*. One finds a significant difference between the 
shape of the surfaces [7].  
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Fig. 1: The group diagram for (left) nonrelativistic Hall MHD 
and (right) relativistic Hall MHD 
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