2nd Asia-Pacific Conference on Plasma Physics, 12-17,11.2018, Kanazawa, Japan

Generation of high-repetitive, multi-MeV, pure proton beams via Coulomb explosion of micron-size hydrogen cluster target

Y. Fukuda¹, M. Kanasaki², S. Jinno³, A. S. Pirozhkov¹, A. Sagisaka¹, K. Ogura¹, Y. Miyasaka¹,

N. Nakanii¹, Y. Takano², K. Morii², T. Asai², K. Sakamoto², K. Shimizu², N. Kitagawa⁴,

K. Morishima⁴, S. Kodaira⁵, Y. Okamoto⁶, R. Matsui⁶, Y. Kishimoto⁶, K. Oda²,

T. Yamauchi², M. Uesaka³, K. Kondo¹, T. Kawachi¹, M. Kando¹, H. Kiriyama¹

¹Kansai Photon Science Institute (KPSI), QST

²Graduate School of Maritime Sciences, Kobe University

³Nuclear Professional School, The University of Tokyo

⁴F-lab, Nagoya University

⁵ National Institute of Radiological Sciences (NIRS), QST

⁶ Graduate School of Energy Science, Kyoto University

e-mail : fukuda.yuji@qst.go.jp

Laser-driven ion acceleration has been one of the most active areas of research over approximately the past decade, because accelerated multi-MeV ion beams have unique properties that can be employed in a broad range of applications. From a view point of practical applications, high-purity proton beams with high reproducibility are quite advantageous. In experiments using thin foil targets, however, protons from surface contaminants along with the high-z component materials are accelerated together, making the production of impurity-free proton beams unrealistic.

Here we introduce a micron-size hydrogen cluster (composed of 10^{8-10} hydrogen molecules) as a target to generate impurity-free, highly-reproducible, and robust multi-MeV proton beams [1, 2]. Because of the recent progress in intense laser technology, the advanced PW class lasers can now achieve intense laser fields around 10^{22} W/cm²[3]; with such fields, all the electrons inside the micron-size hydrogen cluster up to 3.0 µm in diameter can be fully stripped off, resulting in a pure Coulomb explosion with a pronounced increase in accelerated maximum proton energies scaled as $E_{max} = 276(d/2)^2$ MeV, where *d* is a diameter of clusters.

By using the micron-size hydrogen cluster target, we have conducted ion acceleration experiments with the 0.1 Hz PW class J-KAREN laser at QST-KPSI [4]. In order to characterize the accelerated ions, we used nuclear track detector plates (CR-39), nuclear emulsion plates, and a real-time Thomson parabola equipped with a micro-channel plate (MCP), a phosphor screen, and a CCD camera. We found that only protons having the maximum energy of ~12 MeV, consistent with the theoretical prediction, were accelerated in the laser propagation direction at a laser focused intensity of 1×10^{20} W/cm². Based on the experimental results, the detailed ion acceleration mechanism by Coulomb explosion of clusters is discussed with the help from numerical simulations using a particle-in-cell (PIC) method.

References

1. S. Jinno et al., Opt. Exp. 25, 18774 (2017).

- S. Jinno *et al.*, Plasma Phys. Control. Fusion **60**, 044021 (2018).
- 3. A. S. Pirozhkov *et al.*, Opt. Express **25**, 20486 (2017).
- 4. H. Kiriyama et al., Opt. Lett. 43, 2595 (2018).