L-I19 AAPPS-DPP2018

2nd Asia-Pacific Conference on Plasma Physics, 12-17,11.2018, Kanazawa, Japan

Experimental signatures of the quantum nature of radiation reaction in the field of an ultra-intense laser

<u>G. Sarri¹</u>, K. Poder^{2,3}, M. Tamburini⁴, A. Di Piazza⁴, S. Kuschel^{5,6}, C. D. Baird⁷, K. Behm⁸, S. Bohlen³, J. M. Cole², D. J. Corvan¹, M. Duff⁹, E. Gerstmayr², C. H. Keitel⁴, K. Krushelnick⁸, S. P. D. Mangles², P. McKenna⁹, C. D. Murphy⁷, Z. Najmudin², C. P. Ridgers⁷, G. M. Samarin¹, D. Symes¹⁰, A. G. R. Thomas^{8,11}, J. Warwick¹, and M. Zepf^{1,5,6}

¹School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast

²The John Adams Institute for Accelerator Science, Imperial College London, London

³Deutsches Elektronen Synchrotron DESY, Hamburg 22607

⁴Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, Heidelberg

⁵Helmholtz Institute Jena, Frobelstieg 3, 07743 Jena

⁶Institut fur Optik und Quantenelektronik, Friedrich-Schiller-Universitat Jena

⁷Department of Physics, University of York, Heslington, York

⁸Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan

⁹Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG

¹⁰Central Laser Facility, Rutherford Appleton Laboratory, Didcot

¹¹Lancaster University, Lancaster LA1 4YB

e-mail (speaker): g.sarri@qub.ac.uk

The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date there is no unanimously accepted theoretical solution for ultra-high intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself, the so-called radiation reaction force. We report here [1,2] on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultra-intense laser (dimensionless intensity $a \sim 10$). In their own rest frame, the highest energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.

[1] K. Poder et al., submitted to Phys. Rev. X (2018). ArXiv: 1709.01861

[2] J. M. Cole et al., Phys. Rev. X 8, 011020 (2018)