2nd Asia-Pacific Conference on Plasma Physics, 12-17,11.2018, Kanazawa, Japan Uniform implosion of fuel target in heavy ion fusion

R. Sato¹, K. Uchibori¹, H. Katoh¹, T. Karino¹, S. Kawata¹, A. I. Ogoyski²

¹ Graduate School of Engineering, Utsunomiya University

² Department of Physics, Technical University of Varna

e-mail (speaker): mt176220@cc.utsunomiya-u.ac.jp

In inertial fusion, the fusion fuel compression is essentially important to reduce an input driver energy [1]. In order to realize inertial confinement fusion (ICF), a sufficient energy gain is required. A uniform fuel implosion is essentially required to release the fusion energy. In order to realize the uniform implosion, the non-uniformity of the implosion acceleration should be less than a few % [2, 3]. In this research, we propose to employ wobbling heavy ion beams (HIBs) to reduce the HIB illumination non-uniformity and the Rayleigh-Taylor instability (RTI) growth.

The wobbling HIBs would provide a small oscillating acceleration perturbation in an inertial fusion fuel target during the target implosion. Therefore, the RTI growth is reduced by the phase-controlled superposition of perturbations in heavy ion inertial fusion (HIF) [4, 5].

Figure 1 shows a schematic diagram for the spiral wobbling beam. When we employ the spiral motion of each HIB axis, the initial imprint of the HIBs irradiation non-uniformity is significantly reduced. Figure 2 presents a successful non-uniformity smoothing effect on the fuel target temperatures for the case with the spiral wobbling HIBs at 29ns before the void closure. Figure 2 confirms the mitigation of implosion non-uniformity by the wobbling HIBs. Figure 3 shows non-uniformity target ion histories of the temperature. The non-uniformity is evaluated by the total relative root-mean-square. Figure 3 demonstrates that the

Figure 2. Ion temperature distribution diagram at 29ns.

implosion non-uniformity of the DT fuel target is reduced well by the spiral wobbling HIBs. Figure 4 demonstrates that the fusion energy gain increases in high rotation frequency.

In conclusion, we have confirmed that the implosion non-uniformity is successfully mitigated by using the spiral wobbling HIBs for the HIBs irradiation system.

Acknowledgements

The work was partly supported by JSPS, NEXT, CORE (Center for Optical Research and Education, Utsunomiya University), and ILE/Osaka University.

References

- [1] S. Atzeni, and J. Meyer-ter-Vehn: The Physics of Inertial Fusion, (Oxford Science Pub 2004).
- [2] M. H. Emery, J. H. Orens, J. H. Gardner, and J. P. Boris: Phys. Rev. Lett. 48 (1982) 253.
- [3] S. Kawata, and K. Niu: J. Phys. Soc. Jpn. 53 (1984) 3416.
- [4] S. Kawata, and T. Karino: Phys. Plasama 22 (2015) 042106.
- [5] S. Kawata, T. Karino, and A. I. Ogoyski: Matter and Radiation at Extremes 1 (2016) 89.

Figure 3. Non-uniformity histories of the target ion temperature.

Figure 4. Target energy gain vs rotation frequency.