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1 Introduction 

Spatial distributions of the ion temperature and flow in 

magnetic fusion devices are essential for the transport 

study. In particular, their space derivatives are also neces-

sary for many transport analyses [1]. Therefore, it is nec-

essary to make smooth regression curves to the observed 

distributions with noise. 
   One of the most widespread diagnostics to measure the 

ion temperature and flow distributions is charge exchange 

spectroscopy (CXS) [2]. In CXS measurement, their quan-

tities are evaluated from the spectral shapes of the emis-

sion during charge exchange interactions between injected 

neutral particles and fully ionized impurities. This princi-

ple results in complexly distributed noise which does not 

only differ from Gaussian, but also depends on other var-

iables. For example, noise amplitude in the temperature 

data evaluated from the spectral shape of the emission de-

pends on the spectral intensity. In the case of extremely 

low spectral intensity, an outlier is often measured. Meas-

urement data with such an outlier cannot be performed a 

regression analysis accurately with conventional least 

squares method. Because of the above noise property, 

fully automatic regression of the CXS data, which is rou-

tinely obtained, has been difficult and some human super-

vision has been always necessary.  
     In this work, we propose a robust regression method 

with which the complexly distributed noise is also esti-

mated from vast measurement data simultaneously. We 

apply our method to the CXS data measured for LHD.  

 
2 Proposed method 

We consider the 𝑖-th spatial distribution data of the ion 

temperature 𝑇(𝑖) as a sum of the true latent function 𝑓(𝑖) 

and the noise 𝜖(𝑖)  

𝑇(𝑖)(𝑟𝑗) = 𝑓(𝑖)(𝑟𝑗) + 𝜖(𝑖)(𝑟𝑗) (1) 

where 𝑟𝑗 is the position of the 𝑗 –th measurement point in 

the minor radius 𝑟 coordinates. We model 𝑓(𝑖) as a linear 

sum of 𝐾 basis functions 

𝑓(𝑖)(𝑟𝑗) = ∑ 𝑤𝑘
(𝑖)

𝜙𝑘(𝑟𝑗 , 𝜇𝑘, 𝜔𝑘)

𝐾

𝑘=1

 (2) 

where 𝜙𝑘(𝑟𝑗 , 𝜇𝑘 , 𝜔𝑘)  is a Gaussian basis function with 

mean 𝜇𝑘  and width 𝜔𝑘 , and 𝑤𝑘
(𝑖)

 is its coefficient. 𝜙𝑘  is 

common to all the spatial distribution data of the ion tem-

perature, while 𝑤𝑘
(𝑖)

 depends on the data index 𝑖. 
The noise amplitude in the CXS data often does not fol-

low Gaussian distribution. Therefore, we model the noise 

𝜖(𝑖)  as following Student’s t-distribution with mean 0, 

scale parameter 𝜎 and degree of freedom 𝜈 

𝜖(𝑖)(𝑟𝑗)~𝑆𝑡(0, 𝜎(𝑓(𝑖)(𝑟𝑗), 𝑉(𝑖)(𝑟𝑗), 𝐼(𝑖)(𝑟𝑗), 𝛩𝜎), 

                        𝜈(𝑓(𝑖)(𝑟𝑗), 𝑉(𝑖)(𝑟𝑗), 𝐼(𝑖)(𝑟𝑗), 𝛩𝜈)) 
(3) 

where 𝑉(𝑖) and 𝐼(𝑖) are respectively the spatial distribution 

data of the flow and spectral intensity measured by CXS 

simultaneously with 𝑇(𝑖) . Both 𝜎 and 𝜈 are functions of 

𝑓(𝑖), 𝑉(𝑖) and 𝐼(𝑖), which contribute to the spectral shapes. 

For the functions 𝜎  and 𝜈 , we adopted neural network 

with parameters 𝛩𝜎  and 𝛩𝜈 respectively.  

Parameters 𝛩𝜎  and 𝛩𝜈  may include the noise property 

of the hardware. Therefore, these parameters should be 

common to all the data. We consider 944 sets of CXS data 

measured for LHD and optimize all the parameters simul-

taneously. 
 

3 Result 

Fig. 1 shows an example of the temperature distribution 

data. Black circles are the measurement data. Red curve 

shows the regression curve with the least squares method, 

while blue curve shows the regression curve with our 

method. Blue region shows the 95% interval of the noise 

distribution estimated with our method. 

In Fig. 1, the regression curve with the least squares 

method overfits the outliers at 𝑟 ≈ 0.67 because of the in-

accurate assumption on the noise, i.e. it assumes homoge-

neous Gaussian [3]. On the other hand, the regression 

curve with our method doesn’t overfit the outliers. In ad-

dition, the 95% interval of the estimated noise distribution 

in the outliers is much larger than that in other data. 

 

References 

[1] M. Yokoyama, et al. , 2013, Plasma and Fusion Re-

search, vol. 8, 2403016. 

[2] M. Yoshinuma, et al. , 2010, Fusion Science and Tech-

nology, vol. 58 (1), pp. 375-382. 

[3] C. M. Bishop, Pattern Recognition and Machine 

Learning, Springer, 2006. 

 

 
Fig. 1 An example of the ion temperature data, regression 

curves with least squares method and with our method, 

and the estimated noise distribution. 
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