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Predicting  transport  in  fusion  devices  is  important  to
interpret  and  optimize  current  experiments,  and
extrapolate  to  future  machines.  Quasilinear  turbulent
transport models have been very successful in predicting
particle  and  heat  transport  in  tokamaks,  successfully
reproducing  experimental  profiles  in  many  cases.  One
such code is QuaLiKiz, a reduced model which has been
successfully validated against JET, ASDEX-U and Tore-
Supra  profiles  [1,2,3,4].  While  QuaLiKiz  is  already  6
orders  of  magnitude faster  than  non-linear  gyrokinetic
simulations,  integrated  modelling  simulations  of  1s  of
JET evolution  still  demands  ~10 hour simulation  time
parallelised over 10 cores.  Using  neural  networks as  a
surrogate turbulence model,  the computational cost can
be  reduced  up  to  5  orders  of  magnitude  allowing  for
scenario optimisation and real-time applications.
In  this  work,  we  use  a  large  database  of  3.10^8  flux
calculations  over  a  9D input  space  generated  with  the
QuaLiKiz  code  to  train  feed-forward  neural  networks.
The input space is an extension of the 4D input space of
the networks successfully implemented in the RAPTOR
rapid  profile  evolution  code  [5,6].  We  extend  the  ion
temperature  gradient  R/LTi

,  ion-electron  temperature
ratio T i /T e, safety factor q and magnetic shear ŝ with
the  electron  temperature  gradient  R/LTe

,  density
gradient  R/Ln,  local  inverse  aspect  ratio  ρ /R,
collisionality ν∗¿, and Zeff . Rotation shearγe is added
as a 10th dimension using a generalised ExB turbulence
suppression rule in post-processing [7]. Training is done
with  the  powerful  TensorFlow  framework,  automated
using the Luigi pipeline manager. This approach allows
for  simple  extension  to  for  example  networks  over  a

larger  dimensional  input  space,  trained  on  the
experimentally relevant subspace [8]. In the training and
validation,  extra  care  is  given  to  maintaining  physical
constraints of the underlying model, while sacrificing as
little  network  evaluation  speed  as  possible.  The  main
considerations are  related  to  the ETG,  ITG, and  TEM
instablity  threshold.  This  threshold  needs  to  be  well-
captured and sharp, and should be at exactly the same for
all  transport  channels.  Aditionally,  no  residual  fluxes
should  be  predicted  by  the  network  in  regions  where
QuaLiKiz predicts zero flux [9].
The trained networks allow for transport simulations at a
speed that is unprecedented, and opens new avenues in
the modelling of fusion experiments.

[1] J. Citrin et. al., PPCF 59 12400 (2017);
[2] J. Citrin, this conference (AAPPS-DPP 2018)
[3] C. Bourdelle et. al., PPCF 58 014036 (2016)
[4] M. Marin et. al., this conference (AAPPS-DPP 2018)
[5] F. Felici and O. Sauter, PPCF 54, 2 (2012)
[6] F. Felici et. al., Nuclear Fusion (2018, submitted)
[7] V.I. Dagnelie et. al., University of Utrecht (2017)
[8] A. Ho et. al., this conference (AAPPS-DPP 2018)
[9] K.L. van de Plassche et. al., EPS 2017

                            

MFP-40 AAPPS-DPP2018


