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Physical models that describe the dynamics of matter, whether they be discrete, like those for interacting par-

ticles or dust, or continuum models, like those for fluids and plasmas, possess structure. The structure may be of
Hamiltonian type (see [1, 2] for review) and/or posses dissipation and exhibit metriplectic structure [3] (see [4] for
review). The structure may give rise to conservation laws resulting fromGalilean, Poincare, or other invariance, or it
may assure the property of entropy production giving relaxation to thermal equilibrium. On a basic level, all struc-
ture ultimately arises from an underlying Hamiltonian form that may or may not be maintained in approximations
and/or reductions of various kinds.

I will survey the structure and its uses for a variety of models, with an emphasis on general magnetofluidmodels
[5, 6, 7, 8, 9, 10, 11] and Vlasov-Maxwell theory [1, 12]. In particular, I will discuss structure preserving numerical
algorithms and how structure can be used to design algorithms for specific purposes [13, 14, 15, 16]. Although
symplectic integration has beenwell studied andwidely used for finite-dimensional systems, the preservation of the
structure that occurs in continuummodels such as extended magnetohydrodynamics with generalized helicities, is
considerably more difficult to implement. Progress in developing a discrete version of the Maxwell-Vlasov system
that preserves its Hamiltonian structure, and its numerical implementation will be discussed [14].
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