

3<sup>rd</sup> Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China **Evolution of chemical composition in radical-activated water for one month** 

Naoyuki Iwata<sup>1</sup>, Vladislav Gamaleeve<sup>1</sup>, Jun-Seok Oh<sup>1,2</sup>,

Takayuki Ohta<sup>1</sup>, Masaru Hori<sup>3</sup>, Masafumi Ito<sup>1</sup>

<sup>1</sup> Meijo University, Japan,

<sup>2</sup> Osaka City University, Japan

<sup>3</sup> Nagoya University, Japan

e-mail: ito@ meijo-u.ac.jp

Recently, plasma-activated water (PAW) has been paid much attention because of its huge potential for various application forms such as disinfection of medical instruments and water purification. For a decade, many researchers have reported about the mechanism of plasma sterilization in liquid phase and revealed the key species in complicated composition of reactive oxygen and nitrogen species (RONS) in the PAW. [1] The reports indicated short-living species i.e. OH• and HOO• are key species and they also assumed that electrically-neutral radicals are the generators of those species. However, there have been few reports, performing a quantitative measurement of radicals to prove that neutral radicals actually involve in the generation of bactericidal efficacy.

In this study, we employed an atmospheric-pressure radical source, which selectively supplies electricallyneutral radicals without charged species or UV photons to produce radical-activated water (RAW) and evaluated the time evolution of chemical composition using UV-Vis absorption spectroscopy.

In the experiment, deionized water (DI water) was treated with the atmospheric-pressure oxygen radical source (Fuji Machine, Tough Plasma) [2]. DI water of 700 mL was irradiated with NO radicals for 10 min. The RAW sample was dispensed into several tens glass bottles by 20 mL and stored until the investigation. We used UV-Vis absorption spectroscopy and deconvolution analysis to measure the RONS concentrations in RAW. It was found that H<sub>2</sub>O<sub>2</sub>, NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup> and O<sub>2aq</sub> which were generated via radical irradiation of DI water. [3] As the result, the concentrations of H<sub>2</sub>O<sub>2</sub> and O<sub>2aq</sub> were quite symmetric to each other as shown Fig.1. (The concentration of O<sub>2ag</sub> on day 30 is a negative value, which could be explained by the initial value of  $O_{2aq}$  for the automated curve-fitting data) This result might indicate that H<sub>2</sub>O<sub>2</sub> and O<sub>2aq</sub> continued converting to each other by reaction (1). So far, O<sub>2aq</sub> conversion to H<sub>2</sub>O<sub>2</sub> has not been investigated well, so an unknown molecule which seems to involve in the  $O_{2aq}$ conversion to H<sub>2</sub>O<sub>2</sub> is described as X and X'. Moreover, another strong symmetric relation was confirmed between NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> as shown in Fig. 2. This symmetry can be explained by reaction (2). Therefore, each  $H_2O_2$  -  $O_{2ag}$  and  $NO_2^-$  -  $NO_3^-$  might keep converting each other and survived for 30 days since the radical treatment.

In summary, we investigated the time evolution of chemical composition in RAW. As a result, some reactive oxygen and nitrogen species such as  $H_2O_2$  was remained even 30 days after the radical treatment.

This work was supported by the MEXT-Supported

Program for the Strategic Research Foundation at Private Universities (S1511021) and a JSPS KAKENHI Grant Number JP17K05099.

$$H_2O_2 + X \leftrightarrow O_{2aq} + X' \tag{1}$$

 $2H^+ + 2NO_2^- + O_{2aq} \rightarrow 2H^+ + 2NO_3^-$  (2)

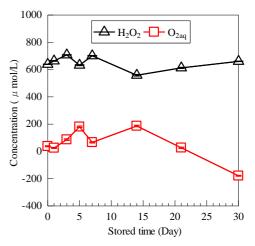



Fig. 1. Time evolution of  $H_2O_2$  and  $O_{2aq}$  concentrations.

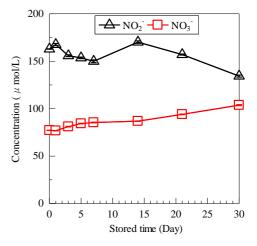



Fig. 2. Time evolution of NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> concentrations.

References

[1] S. Ikawa, *et al.*, Plasma Processes Polym. 7, 33 (2010).

- [2] H. Hashizume, *et al.*, Jpn. J. Appl. Phys. **52**, 056202 (2013).
- [3] N. Iwata, *et al.*, Plasma Process Polym. e1900055 (2019).