

3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China **Development of Electrodeless Thruster** using High-Density Helicon Plasma Sources

Shunjiro Shinohara Tokyo University of Agriculture and Technology e-mail (sshinoha@cc.tuat.ac.jp):

Helicon plasma sources [1-3], using an rf (radio frequency) range, are very useful, because of high-density $(\sim 10^{13} \text{ cm}^{-3})$ and low electron temperature (from a few to several eV) available with a broad range of external operating parameters. Various kinds of the sources have been developed and characterized by us to control plasmas as required: e.g., very large- [4,5] (up to 74 cm in diameter with an axial length of 486 cm) or very small-area [2,6-9] (from 2 cm in diameter to down to 0.05-0.3 cm plasmas have been established just recently) sources can be found. Particle production efficiency in a wide range of plasma size showed an excellent performance [5], close to a classical diffusion coefficient. High-beta (~1) plasma can be easily achieved, showing an importance of neutrals effect [10]. Therefore, these sources can be expected to be utilized in vast areas from fundamental to application fields. Applying these sources to a space propulsion system with an advanced concept of an electrodeless condition (no direct contact between a plasma and electrodes/antennas) [5,7] has been executed, due to a longer life operation expected.

Here, we will overview our studies on various-sized, helicon plasma sources and their application to the electrodeless thrusters under the Helicon Electrodeless Advanced Thruster (HEAT) project [5,7]: Characteristics of very large or small (diameter) sources, and plasma thrust performance [7,11]. Here, a broad range of excitation frequency, 7-435 MHz, was used for optimization of plasma sources. In addition, some trials of electrodeless, additional acceleration methods are introduced, such as Rotating Magnetic Field (RMF) [7,9,12-14] and m = 0 half cycle schemes [7,9,12] (see Fig. 1). We also emphasize the importance of some diagnostics [9,11,12] such as Laser Induced Fluorescence (LIF) method, tomography one using a high-speed camera with interference filters (including a development of a collisional radiative model to deduce electron temperature and its density in argon plasmas) as well as various thrust stands.

This work was supported partially by the Grant-in-Aid for Scientific Research under Grants S: 21226019 and B: 17H02295 through the Japan Society for the Promotion Science, and also by NIFS budget code of NIFS17KLER063. We would like to thank HEAT project members to carry out this research.

References

- [1] R. W. Boswell, Phys. Lett. 33A, 457 (1970).
- [2] S. Shinohara, Adv. Phys.:X 3, 185 (2018) (Review Paper), and references therein.
- [3] S. Isayama, S. Shinohara, and T. Hada, Plasma Fusion Res. 13, 1101014 (2018) (Review Paper), and references therein.
- [4] S. Shinohara and T. Tanikawa, Rev. Sci. Insturm. 75, 1941 (2004).
- [5] S. Shinohara, T. Hada, et al, Phys. Plasmas. 16, 6057108 (2009).
- [6] D. Kuwahara, A. Mishio, T. Nakagawa, and S. Shinohara, Rev. Sci. Instrum. 84, 103502 (2013).
- [7] S. Shinohara, H. Nishida, T. Tanikawa, T. Hada, I. Funaki, and K. P. Shamrai, IEEE Trans. Plasma Sci. 42, 1245 (2014).
- [8] I. Levchenko,, S. Shinohara, et al., Appl. Phys. Rev. 5 (2018) 011104.
- [9] S. Shinohara, et al., IEEE Trans. Plasma Sci. 46, 252 (2018).
- [10] S. Shinohara, D. Kuwahara, K. Yano, and A. Fruchtman, Phys. Plasmas 23, 122108 (2016).
- [11] D. Kuwahara, S. Shinohara, and K. Yano, J. Propul. Power 33, 420 (2017).
- [12] S. Shinohara, et al., Plasma Phys. Control. Fusion 61, 014017 (2019).
- [13] T. Furukawa, K. Takizawa, D. Kuwahara and S. Shinohara, Phys. Plasmas 24, 043505 (2017).
- [14] T. Furukawa, K. Shimura, D. Kuwahara and S. Shinohara, Phys. Plasmas 26, 033505 (2019).

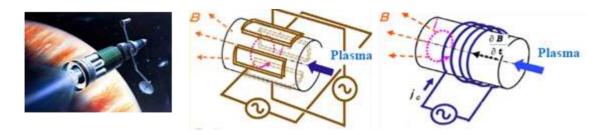


Fig. 1: Imaginary drawing of future helicon thruster (left) with RMF (middle) and m = 0 (right) acceleration methods.