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Three dimensional azimuthal magnetorotational instability of a MHD flow 
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Since the rediscovery of Velikhov's and Chandrasekhar's 
[1,2] results by Balbus and Hawley [3], the 
magnetorotational instability (MRI) has aroused strong 
interest as a promising mechanism for triggering 
turbulence in the flow of an accretion disk and for 
promoting outward transport of angular momentum, 
while the matter accretes to the center. For an accretion 
disk, the Keplerian flow, a cylindrically symmetric flow 
with the profile of rotational velocity 𝑈 ∝ 𝑟 / , 
satisfies the force balance 𝑈 /𝑟 = Ω (𝑟)𝑟 = −∇Φ; Φ ∝
1/𝑟. Here 𝑟 is the distance from the axis of symmetry. 
The combined effect of fluid rotation and the imposed 
axial magnetic field makes unstable the Keplerian flow 
of an ideal conducting fluid, for which the fluid viscosity 
and the electric resistivity are neglected.  

We consider a rotating flow 𝑼 = 𝑟Ω(𝑟)𝒆 , and a 
helical magnetic field 𝑩 = 𝑟𝜇(𝑟)𝒆𝜃  +  𝐵𝑧𝒆𝑧, where 𝒆   

and 𝒆𝑧 are the unit vectors in the azimuthal and axial 
directions. We deal primarily with the azimuthal 
magnetic field 𝐵 = 𝑟𝜇(𝑟)𝒆  and study the azimuthal 
MRI (AMRI) in three dimensions locally by the 
Wentzel-Kramers-Brillouin (WKB) method, valid for 
short-wavelengths, and globally, from the Hamiltonian 
viewpoint, by calculating the wave energy.  
  For the WKB approximation, the radial wavelength 
2𝜋/𝑞 is assumed to be much shorter than the radial 
characteristic length 𝐿, where  𝑞 is the wavenumber in 
the radial direction. Traditionally, the WKB method has 
been applied to the MHD equations, which has a pitfall 
of overlooking some terms relevant to the non 
-axisymmetric disturbances [4]. A more careful approach 
is to deduce a differential equation for a single 
component of the Lagrangian displacement field, and 
then apply the WKB approximation.  
  In ideal MHD, we make the WKB approximation to 
the Hain–Lüst equation for the radial Lagrangian 
displacements [5, 4]. For the Keplerian flow with 
current-free magnetic field 𝐵  ∝ 1/𝑟, the maximum 
growth rate is the Oort A-value 0.75, which is reached at 
a finite magnetic field when 𝑘 → ∞ and 𝑚 → ∞, 
where 𝑘 and 𝑚 are the axial and azimuthal 
wavenumber respectively. But for the 𝑘 → 0 mode, 
maximum growth rate increases, beyond the Oort 
A-value and is linear in the magnetic strength. 

For experiments with liquid metals, the effects of both 
the viscosity 𝜈 and the magnetic diffusivity 𝜂 cannot be 
ignored. Also because of the low electric conductivity, 
the magnetic Prandtl number 𝑃𝑚 = 𝜈/𝜂 is very small 
and the case of  𝑃𝑚 = 0 is referred to as the 
inductionless limit [6]. We extend the Hain–Lüst 
equation by incorporating the effect of 𝜈 and 𝜂 and 
apply the WKB method to it. Defining the magnetic 
Rossby number as 𝑅𝑏 =  𝜇′(𝑟)/2𝜇, the short axial 

wavelength mode k → ∞ is found by the traditional 
WKB approximation [6] but the long axial-wavelength 
mode k → 0 is new. For the Keplerian flow, k → ∞ 
mode is excitable for Rb >  25/32 and the k → 0 
mode is excitable for Rb <  −1/4.  The later makes the 
Keplerian flow in current-free magnetic field (Rb =
 −1), unstable.  
  The ideal MHD is a Hamiltonian system and the 
magnetic field lines are frozen into the fluid, i.e. the 
magnetic flux is conserved 

∫ 𝒃 ⋅ 𝑑𝑺 = 0, 

where 𝒃 is the magnetic field and 𝑆 is an arbitrary 
material surface. Lagrangian displacement 𝝃 describes a 
perturbation of the trajectories of a fluid particle. Assume 
that the disturbance is kinematically accessible i.e. that 
the magnetic flux remains unchanged. This sort of  
disturbance is called the isomagnetovortical [7], for 
which the first-order disturbances of the vorticity and 
magnetic field 𝝎  and 𝒃  take the form 

𝝎  = 𝝃 × 𝝎 + 𝜼 × 𝑩 , 
𝒃  = ∇ × (𝝃 × 𝑩), 

where 𝝎  and 𝑩 are the basic steady vorticity and 
magnetic field, a state in equilibrium, and 𝜼 is a 
supplementary displacement field. We manipulate the 
wave energy of the isomagnetovortical disturbance as  

𝐸 = ∫ 𝛚 ⋅
𝝃

 
× 𝝃 + 𝑩 ⋅

𝝃

 
× 𝜼 − 𝝃 ×

𝜼

 
. 

For a rigid rotation in the magnetic field with 𝑚 = −5, 
Ω = 0.25, 𝜇 = 1, 𝑚 =  1 and 𝐵  =  0, we calculated 
the wave energy as in the following figure.
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