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Taylor’s magnetic energy-minimization principle [1] 

yields static plasma equilibria that are compatible with 

ideal MHD, yet, by removing the ideal “frozen-in flux” 

constraint, non-ideal reconnection is allowed to occur 

in the relaxation process leading to these equilibria.  

 A dynamical generalization of this idea via an 

action-based formulation [2] of Multiregion Relaxed 

MHD (MRxMHD) in 2015 included Taylor relaxation 

of the magnetic field B but did not incorporate a 

relaxation model for the fluid. Nor did it include 

coupling between B and Eulerian fluid velocity u 

except at the interfaces between the multiple relaxation 

subregions Ω𝑖 . 

 A previous attempt [3] at relaxing u using a 

seemingly analogous Lagrangian to that used in [2] for 

B led to results inconsistent with energy relaxation. In 

this paper we show that a new “phase-space” 

Lagrangian, 

𝐿Ω
Rx = ∫ 𝜌𝐮 ∙ 𝐯 𝑑𝑉 − 𝑊Ω

Rx
Ω

,    (1) 

gives Euler–Lagrange equations consistent with 

previous work on relaxed (Rx) steady-flow MHD 

equilibria [4], and appears to give a satisfactory 

generalization of the relaxation concept to dynamics on 

time scales on the order of or longer than relaxation 

times. 

 Above, Ω ∈ {Ω𝑖}, 𝜌 is mass density with ideal 

variation 𝛿𝜌 = −∇ ∙ (𝜌𝝃) under Lagrangian fluid 

displacements 𝝃, and 𝐯 is a reference field 

“conjugate” to u, varying as a Lagrangian-constrained 

velocity, 𝛿𝐯 = 𝜕𝑡𝝃 + 𝐯 ∙ ∇𝝃 − 𝝃 ∙ ∇𝐯, whereas the 

relaxed velocity field 𝐮 is freely variable except on 

the interface 𝜕Ω (as are 𝐁 and pressure 𝑝). 

 In the last term of Eq. (1), the “Hamiltonian” 𝑊Ω
Rx 

is the total (kinetic plus magnetic) plasma energy in Ω, 

with additional Lagrange multiplier terms to constrain 

total magnetic helicity (as in [1]), entropy [2], and 

cross helicity [4] to couple B and u.  

 The Euler–Lagrange equations, necessary 

conditions for the first variation of the action integral 

∫ 𝐿Ω
Rx𝑑𝑡 to vanish under the variations prescribed 

above, are 

        𝑝 = 𝜏Ω𝜌,     (2) 

       𝜌𝐯 = 𝜌𝐮 − 𝜈Ω𝐁/μ0 ,  (3) 

      ∇ × 𝐁 = 𝜇Ω𝐁 + 𝜈Ω𝐮,  (4) 

and    𝜕𝑡𝐮 + (∇ × 𝐮) × 𝐯 = −∇ℎ     (5) 

where 𝜏Ω is the entropy Lagrange multiplier 

(temperature in eV divided by ion mass = square of 

isothermal sound speed squared) and 𝜈Ω and 𝜇Ω are 

the cross-helicity and magnetic-helicity Lagrange 

multipliers, respectively, whereas μ0 is the vacuum 

permeability. Also, the Bernoulli head ℎ is defined as 

      ℎ =
𝑢2

2
+ 𝜏Ω ln

𝜌

𝜌Ω
 ,    (6) 

where 𝜌Ω is a non-dimensionalizing spatial constant. 

 Note that Eq. (3) allows us to eliminate v in favor 

of u. However v does play a crucial role as, unlike [4], 

we restrict variations of 𝜌 to conserve mass micro-

scopically under both Lagrangian displacements and 

time evolution, i.e. 𝜌 obeys the continuity equation 

𝜕𝑡𝜌 + ∇ ∙ (𝜌𝐯) = 0. As Eq. (3) implies ∇ ∙ (𝜌𝐮) = ∇ ∙
(𝜌𝐯), the Eulerian flow u also respects continuity,   

   𝜕𝑡𝜌 + ∇ ∙ (𝜌𝐮) = 0,      (7) 

thus completing our formulation of relaxed dynamics 

within a single subregion Ω𝑖 . 

 Assuming the interfaces between contiguous 

subregions act as massless ideal-MHD transport 

barriers, our phase space action principal also 

reproduces the coupling relation derived in previous 

formulations of MRxMHD (e.g. [2]), namely the 

continuity of 𝑝 + 𝐵2/2μ0 across interfaces, thus 

completing our new dynamical MRxMHD formulation. 

 As indicated above, this formulation is completely 

consistent with Finn and Anderson’s [4] axisymmetric 

relaxed equilibrium, which respects the ideal Ohm’s 

Law equilibrium requirement that ∇ × (𝐮 × 𝐁) = 0. 

The status of this requirement in general, time-

dependent problems will be discussed, and applications 

to problems such as normal mode stability studies will 

be indicated. 

 Numerical studies will be discussed elsewhere in 

this conference (Qu et al.) 
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