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1.  Outline

Linearization of a Hamiltonian system around an en-
ergy-Casimir equilibrium point yields a linear Hamilto-
nian system, which has the Hamiltonian spectral sym-
metry [1]: If A=y +iw is an eigenvalue, —A is also
an eigenvalue (moreover A is also an eigenvalue).
However, linearization around a singular equilibrium
point works out differently, and spectral symmetry
breaking occurs, resulting in chiral dynamics. This inter-
esting phenomenon was first found in analyzing the chi-
ral motion of a rattleback, a boat-shaped top having mis-
aligned axes of inertia and geometry [2]. To elucidate
how non-Hamiltonian (or chiral) spectra are generated,
we study the three-dimensional Bianchi Lie-Poisson sys-
tems and classify the prototypes of singularities that
causes chirality (the rattleback model is a class-B, type
IV Lie-Poisson system). The central idea is the defor-
mation of the underlying Lie algebra; we show that the
class-B algebras (by Bianchi’s classification), which are
produced by asymmetric deformations of a simple alge-
bra, yield chiral spectra when linearized around the sin-
gularities.

2. Lie-Poisson algebra

There is a systematic method for constructing Pois-
son brackets from any given Lie algebra. Let X be a
vector space, on which we define a Lie algebra with a
bracket [ ,]. The adjoint action ad, = [ ,h] repre-
sents dynamics in X. The dual space X* is the phase
space, which is the totality of real-valued linear function-
als representing observables. We denote ( , ): X X
X* — R, and define the coadjoint action adj, = [ , h]*,
where [, |": X X X* > X* is given by

([g,hl, ®) = (g, [h, &]").

We call X* a Poisson manifold, and consider C*(X*),
the space of smooth real-valued functionals on X*. For
F(¢) € C*(X™), we denote its gradient by 94F € X.
Then,

{G,H} = ([045G,0,H), ¢) = (0,6, [0,H, ] ')
is a Poisson bracket (Jacobi’s identity inherits from [ , ]).
Hamilton’s equation is G = {G,H} (H is a Hamilto-
nian). For G = (046G, ¢), Hamilton’s equation implies

$ =J(P)o,H, (1

We call J(¢) = [o,¢]* aPoisson operator.

See [2] for the complete list of Poisson operators cor-
responding to the Bianchi classification of three-dimen-
sional Lie-Poisson algebras.

3. Deformation

Physically, (adp ©, @) = ([, hl, ) = (o, [, ¢]")
means the observation of the action of a Hamiltonian
vector h by an observable ¢. When we transform ¢
by M € End(X™), the dynamics (adjoint action) will
look different. Of course, there is a constraint on M so
that the modified dynamics maintains to be Hamiltonian.
Explicitly, we may write {[g, h], M¢) = (Mt[g, k], p),
so the deformed bracket [,], = M‘[,] must be a Lie
bracket. We have the following observations for three-
dimensional Lie algebras:

(1) Starting from the simple algebra [ej, ek]IX = €jkeeyr
(i.e. so(3) algebra, which is called type-IX in Bian-
chi’s table), we can produce all possible Lie alge-
bras with some M. The deformed Poisson opera-
toris J(§) = [o,M]", = (o % Mg)).

(2) Every symmetric M produces a class-A algebra.

(3) Ifrank M =3, only symmetric M produces a Lie al-
gebra.

(4) Ifrank M <2, any M suchthat M = N @ 0 pro-
duces a Lie algebra. When N is not symmetric,
then the deformed algebra is class-B.

4. Chiral spectra of class-B Lie-Poisson system
By the Lie-Darboux theorem, a 3-dimensional Pois-
son manifold is foliated by a Casimir (which is a func-
tional C € C*(X™) suchthat {C,H} = 0 (VH)); see [2]
for the complete list of Casimirs. If M is a symmetric
matrix (i.e. class-A), C = (M'¢, p)/2 is the Casimir.
Otherwise (i.e. class-B), the Casimir is a more compli-
cated function (the leaves are not algebraic varieties).
Because the Poisson operator J(¢) is a linear func-
tion of ¢, it has a singularity where rank J(¢) drops to
zero. When M = N @ 0, the ¢3-axis (the line of
¢, = ¢, = 0, which we denote by X) is the singularity.
For Hamilton’s equation (1), the singularity ¥ is an
equilibrium point (i.e. ¢ = 0). Linearizing (1) around
%, we obtain (denoting the perturbation by ¢, and
6¢H ls = h),

¢=J(@)h=hxMg, 2)
which is a Hamiltonian system only if M is symmetric
(i.e., class-A). Then, the Casimir C = (M, $)/2 plays
the role of Hamiltonian. For M of class-B, (2) is not
Hamiltonian, so that the Krein symmetry is broken.
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