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1. Outline 

Linearization of a Hamiltonian system around an en-

ergy-Casimir equilibrium point yields a linear Hamilto-

nian system, which has the Hamiltonian spectral sym-

metry [1]: If λ = γ + i ω is an eigenvalue, −λ is also 

an eigenvalue (moreover λ∗ is also an eigenvalue).  

However, linearization around a singular equilibrium 

point works out differently, and spectral symmetry 

breaking occurs, resulting in chiral dynamics. This inter-

esting phenomenon was first found in analyzing the chi-

ral motion of a rattleback, a boat-shaped top having mis-

aligned axes of inertia and geometry [2].  To elucidate 

how non-Hamiltonian (or chiral) spectra are generated, 

we study the three-dimensional Bianchi Lie-Poisson sys-

tems and classify the prototypes of singularities that 

causes chirality (the rattleback model is a class-B, type 

IV Lie-Poisson system).  The central idea is the defor-

mation of the underlying Lie algebra; we show that the 

class-B algebras (by Bianchi’s classification), which are 

produced by asymmetric deformations of a simple alge-

bra, yield chiral spectra when linearized around the sin-

gularities. 

2. Lie-Poisson algebra 

There is a systematic method for constructing Pois-

son brackets from any given Lie algebra.  Let 𝑋 be a 

vector space, on which we define a Lie algebra with a 

bracket [ , ].  The adjoint action adℎ = [  , ℎ] repre-

sents dynamics in 𝑋.  The dual space 𝑋∗ is the phase 

space, which is the totality of real-valued linear function-

als representing observables.  We denote ⟨  , ⟩: 𝑋 ×
𝑋∗ → 𝐑, and define the coadjoint action adℎ

∗ = [  , ℎ]∗, 

where [  , ]∗: 𝑋 × 𝑋∗ → 𝑋∗ is given by  

 〈[𝑔, ℎ], 𝜙〉 = ⟨𝑔, [ℎ, 𝜙]∗⟩.  

We call 𝑋∗ a Poisson manifold, and consider C∞(𝑋∗), 

the space of smooth real-valued functionals on 𝑋∗.  For 

𝐹(𝜙) ∈ C∞(𝑋∗), we denote its gradient by ∂ϕ𝐹 ∈ 𝑋. 

Then, 

 {𝐺, 𝐻} = ⟨[𝜕𝜙𝐺, 𝜕𝜙𝐻], 𝜙⟩ = ⟨𝜕𝜙𝐺, [𝜕𝜙𝐻, 𝜙]
∗
⟩  

is a Poisson bracket (Jacobi’s identity inherits from [ , ]). 

Hamilton’s equation is �̇� = {𝐺, 𝐻} (H is a Hamilto-

nian).  For �̇� = ⟨𝜕𝜙𝐺, �̇�⟩, Hamilton’s equation implies  

 �̇� = 𝐽(𝜙)𝜕𝜙𝐻, (1) 

We call 𝐽(𝜙) = [∘, 𝜙]∗ a Poisson operator. 

See [2] for the complete list of Poisson operators cor-

responding to the Bianchi classification of three-dimen-

sional Lie-Poisson algebras.  

 

3.  Deformation 

Physically, ⟨adℎ ∘ , 𝜙〉 = 〈[∘, ℎ], 𝜙〉 = ⟨∘, [ℎ, 𝜙]∗⟩ 
means the observation of the action of a Hamiltonian 

vector ℎ by an observable 𝜙.  When we transform 𝜙 

by 𝑀 ∈ End(𝑋∗), the dynamics (adjoint action) will 

look different.  Of course, there is a constraint on M so 

that the modified dynamics maintains to be Hamiltonian.  

Explicitly, we may write ⟨[𝑔, ℎ], 𝑀𝜙⟩ = ⟨𝑀𝑡[𝑔, ℎ], 𝜙⟩, 
so the deformed bracket [ , ]𝑀 = 𝑀𝑡[ , ] must be a Lie 

bracket.  We have the following observations for three-

dimensional Lie algebras: 

(1) Starting from the simple algebra [𝑒𝑗, 𝑒𝑘]
IX

= 𝜖𝑗𝑘ℓ𝑒ℓ 

(i.e. so(3) algebra, which is called type-IX in Bian-

chi’s table), we can produce all possible Lie alge-

bras with some M.  The deformed Poisson opera-

tor is 𝐽(𝜙) = [∘, 𝑀𝜙]∗
IX

=  ( ∘ × 𝑀𝜙). 

(2) Every symmetric M produces a class-A algebra. 

(3) If rank M =3, only symmetric M produces a Lie al-

gebra. 

(4) If rank 𝑀 ≤ 2, any M such that 𝑀 = 𝑁 ⊕ 0 pro-

duces a Lie algebra.  When N is not symmetric, 

then the deformed algebra is class-B. 

4. Chiral spectra of class-B Lie-Poisson system 

By the Lie-Darboux theorem, a 3-dimensional Pois-

son manifold is foliated by a Casimir (which is a func-

tional 𝐶 ∈ C∞(𝑋∗) such that {𝐶, 𝐻} = 0 (∀𝐻)); see [2] 

for the complete list of Casimirs.  If M is a symmetric 

matrix (i.e. class-A), 𝐶 = ⟨𝑀𝑡𝜙, 𝜙⟩/2 is the Casimir.  

Otherwise (i.e. class-B), the Casimir is a more compli-

cated function (the leaves are not algebraic varieties).   

Because the Poisson operator 𝐽(𝜙) is a linear func-

tion of 𝜙, it has a singularity where rank 𝐽(𝜙) drops to 

zero.  When 𝑀 = 𝑁 ⊕ 0, the 𝜙3-axis (the line of 

𝜙1 = 𝜙2 = 0, which we denote by Σ) is the singularity.  

For Hamilton’s equation (1), the singularity Σ is an 

equilibrium point (i.e. �̇� = 0).  Linearizing (1) around 

Σ, we obtain (denoting the perturbation by �̃�, and 

∂ϕ𝐻|Σ = ℎ),    

 �̇̃� = 𝐽(�̃�)ℎ = ℎ × 𝑀 �̃� , (2) 

which is a Hamiltonian system only if M is symmetric 

(i.e., class-A). Then, the Casimir 𝐶 = ⟨𝑀𝑡�̃�, �̃�⟩/2 plays 

the role of Hamiltonian.  For M of class-B, (2) is not 

Hamiltonian, so that the Krein symmetry is broken.  
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