3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China

Deformation of Lie-Poisson algebras producing chirality

Z.Yoshida¹ and P. J. Morrison² ¹ Department of Advanced Energy, University of Tokyo ² Department of Physics, University of Texas at Austin <u>yoshida@ppl.k.u-tokyo.ac.jp</u> (speaker):

1. Outline

Linearization of a Hamiltonian system around an energy-Casimir equilibrium point yields a linear Hamiltonian system, which has the Hamiltonian spectral symmetry [1]: If $\lambda = \gamma + i \omega$ is an eigenvalue, $-\lambda$ is also an eigenvalue (moreover λ^* is also an eigenvalue). However, linearization around a singular equilibrium point works out differently, and spectral symmetry breaking occurs, resulting in chiral dynamics. This interesting phenomenon was first found in analyzing the chiral motion of a rattleback, a boat-shaped top having misaligned axes of inertia and geometry [2]. To elucidate how non-Hamiltonian (or chiral) spectra are generated, we study the three-dimensional Bianchi Lie-Poisson systems and classify the prototypes of singularities that causes chirality (the rattleback model is a class-B, type IV Lie-Poisson system). The central idea is the deformation of the underlying Lie algebra; we show that the class-B algebras (by Bianchi's classification), which are produced by asymmetric deformations of a simple algebra, yield chiral spectra when linearized around the singularities.

2. Lie-Poisson algebra

There is a systematic method for constructing Poisson brackets from any given Lie algebra. Let X be a vector space, on which we define a Lie algebra with a bracket [,]. The adjoint action $ad_h = [,h]$ represents dynamics in X. The dual space X^* is the phase space, which is the totality of real-valued linear functionals representing observables. We denote $\langle , \rangle : X \times X^* \to \mathbf{R}$, and define the coadjoint action $ad_h^* = [,h]^*$, where $[,]^*: X \times X^* \to X^*$ is given by

$$\langle [g,h],\phi\rangle = \langle g,[h,\phi]^*\rangle.$$

We call X^* a Poisson manifold, and consider $C^{\infty}(X^*)$, the space of smooth real-valued functionals on X^* . For $F(\phi) \in C^{\infty}(X^*)$, we denote its gradient by $\partial_{\phi}F \in X$. Then,

$$\{G,H\} = \left\langle \left[\partial_{\phi}G,\partial_{\phi}H\right],\phi\right\rangle = \left\langle \partial_{\phi}G,\left[\partial_{\phi}H,\phi\right]^{*}\right\rangle$$

is a Poisson bracket (Jacobi's identity inherits from [,]). Hamilton's equation is $\dot{G} = \{G, H\}$ (*H* is a Hamiltonian). For $\dot{G} = \langle \partial_{\phi} G, \dot{\phi} \rangle$, Hamilton's equation implies

$$\dot{\phi} = J(\phi)\partial_{\phi}H,\tag{1}$$

We call $J(\phi) = [\circ, \phi]^*$ a Poisson operator.

See [2] for the complete list of Poisson operators corresponding to the Bianchi classification of three-dimensional Lie-Poisson algebras.

3. Deformation

Physically, $\langle ad_h \circ, \phi \rangle = \langle [\circ, h], \phi \rangle = \langle \circ, [h, \phi]^* \rangle$ means the observation of the action of a Hamiltonian vector *h* by an observable ϕ . When we transform ϕ by $M \in \text{End}(X^*)$, the dynamics (adjoint action) will look different. Of course, there is a constraint on *M* so that the modified dynamics maintains to be Hamiltonian. Explicitly, we may write $\langle [g,h], M\phi \rangle = \langle M^t[g,h], \phi \rangle$, so the deformed bracket $[,]_M = M^t[,]$ must be a Lie bracket. We have the following observations for threedimensional Lie algebras:

- (1) Starting from the simple algebra $[e_j, e_k]_{IX} = \epsilon_{jk\ell} e_\ell$ (i.e. so(3) algebra, which is called type-IX in Bianchi's table), we can produce all possible Lie algebras with some *M*. The deformed Poisson operator is $J(\phi) = [\circ, M\phi]^*_{IX} = (\circ \times M\phi)$.
- (2) Every symmetric *M* produces a class-A algebra.
- (3) If rank *M*=3, only symmetric *M* produces a Lie algebra.
- (4) If rank $M \le 2$, any M such that $M = N \oplus 0$ produces a Lie algebra. When N is not symmetric, then the deformed algebra is class-B.

4. Chiral spectra of class-B Lie-Poisson system

By the Lie-Darboux theorem, a 3-dimensional Poisson manifold is foliated by a Casimir (which is a functional $C \in C^{\infty}(X^*)$ such that $\{C, H\} = 0 \ (\forall H)$); see [2] for the complete list of Casimirs. If *M* is a symmetric matrix (i.e. class-A), $C = \langle M^t \phi, \phi \rangle / 2$ is the Casimir. Otherwise (i.e. class-B), the Casimir is a more complicated function (the leaves are not algebraic varieties).

Because the Poisson operator $J(\phi)$ is a linear function of ϕ , it has a *singularity* where rank $J(\phi)$ drops to zero. When $M = N \bigoplus 0$, the ϕ_3 -axis (the line of $\phi_1 = \phi_2 = 0$, which we denote by Σ) is the singularity. For Hamilton's equation (1), the singularity Σ is an equilibrium point (i.e. $\dot{\phi} = 0$). Linearizing (1) around Σ , we obtain (denoting the perturbation by $\tilde{\phi}$, and $\partial_{\phi}H|_{\Sigma} = h$),

$$\dot{\tilde{\phi}} = J(\tilde{\phi})h = h \times M \,\tilde{\phi} \,, \tag{2}$$

which is a Hamiltonian system only if M is symmetric (i.e., class-A). Then, the Casimir $C = \langle M^t \tilde{\phi}, \tilde{\phi} \rangle/2$ plays the role of Hamiltonian. For M of class-B, (2) is not Hamiltonian, so that the Krein symmetry is broken.

References

- [1] P.J. Morrison, Rev. Mod. Phys. 70 (1998), 467-521.
- [2] Z. Yoshida, P.J. Morrison, and T. Tokieda, Phys. Lett. A 381 (2017), 2772-2777.

