## **BISER** at the keV spectral range

A. S. Pirozhkov<sup>1</sup>, T. Zh. Esirkepov<sup>1</sup>, B. González-Izquierdo<sup>1</sup>, A. Sagisaka<sup>1</sup>, T. A. Pikuz<sup>2,3</sup>,
Z. E. Davidson<sup>4</sup>, K. Ogura<sup>1</sup>, A. Bierwage<sup>5</sup>, K. Huang<sup>1</sup>, N. Nakanii<sup>1</sup>, J. K. Koga<sup>1</sup>, A. Ya. Lopatin<sup>6</sup>,
Y. Fukuda<sup>1</sup>, D. Neely<sup>7,4</sup>, P. McKenna<sup>4</sup>, E. N. Ragozin<sup>8,9</sup>, S. A. Pikuz<sup>3</sup>, N. I. Chkhalo<sup>6</sup>,
N. N. Salashchenko<sup>6</sup>, S. Namba<sup>10</sup>, H. Kiriyama<sup>1</sup>, M. Koike<sup>1</sup>, K. Kondo<sup>1</sup>, T. Kawachi<sup>1</sup>, M. Kando<sup>1</sup>

<sup>1</sup> Kansai Photon Science Institute, QST, 8-1-7 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan

<sup>2</sup> Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan

<sup>3.</sup> Joint Institute for High Temperatures RAS, Izhorskaja Street 13/19, Moscow 127412, Russia

<sup>4</sup> Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

<sup>5</sup> Naka Fusion Institute, QST, Ibaraki, 311-0193, Japan

<sup>6</sup> Institute for Physics of Microstructures RAS, GSP-105, 603087 Nizhny Novgorod, Russia

<sup>7</sup> Central Laser Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK

<sup>8</sup> P. N. Lebedev Physical Institute RAS, Leninsky Prospekt 53, Moscow 119991, Russia

<sup>9</sup> Moscow Institute of Physics and Technology (State University), Institutskii 9, Dolgoprudnyi, 141700, Russia <sup>10.</sup> Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima,

Hiroshima 739-8527, Japan

We have discovered BISER (Burst Intensification by Singularity Emitting Radiation) in underdense laser plasma [1-3], Fig. 1. BISER produces ultra-bright, spatially and temporally coherent, tightly-focusable x-ray emission from singularities of a multi-stream plasma flow driven by multi-TW femtosecond lasers. We have validated the BISER mechanism by direct imaging of point-like x-ray sources, high-resolution spectra and dedicated numerical simulations [3].

Here we demonstrate BISER control using shocks in supersonic gas jets. The experiments have been performed with the upgraded J-KAREN-P laser [4-5]. We have significantly reduced source position jitter and achieved important breakthrough in the coherent x-ray source performance: enhanced the photon yield by an order of magnitude resulting in up to 1  $\mu$ J pulse (10<sup>11</sup> photons) in the 60-100 eV spectral range within a 10<sup>-2</sup> sr acceptance angle, and extended BISER to the keV spectral region.

We thank the J-KAREN-P laser operation group. We acknowledge financial from support JSPS **KAKENHI** grants JP25390135, JP26707031, JP17F17811. SP18104, JP19H00669, and Strategic Grants by QST President (Creative Research #16 and #20).

 [1] A. S. Pirozhkov, *et al.*, "Soft-X-Ray Harmonic Comb from Relativistic Electron Spikes," *PRL* **108**, 135004 (2012).



Fig. 1. **BISER**. (a) Spectrum, experiment; the inset shows setup [1,2]. (b) BISER concept [3]. (c) PIC simulation showing double point-like x-ray source along polarization [3]. (d) Model validation: Direct imaging of double point-like x-ray source in experiment [3]. (e) Attosecond BISER pulse from PIC simulation and comparison with experiment bandwidth limit [3].

- [2] A. S. Pirozhkov, et al "High order harmonics from relativistic electron spikes" NJP 16, 093003 (2014).
- [3] A. S. Pirozhkov, T. Zh. Esirkepov, *et al.*, "Burst intensification by singularity emitting radiation in multi-stream flows," *Scientific Reports* **7**, 17968 (2017).
- [4] A. S. Pirozhkov, *et al.*, "Approaching the diffraction-limited, bandwidth-limited Petawatt," *Opt. Express* **25**, 20486 (2017).
- [5] H. Kiriyama, et al., "High-contrast high-intensity repetitive petawatt laser," Opt. Lett. 43, 2595 (2018).