$3{ }^{\text {rd }}$ Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China
 DPP
 Laser repointing scheme for spherical hohlraum with 6 laser entrance holes on the SG Facility and the National Ignition Facility
 \author{ Ke Lan ${ }^{1}$, Xufei Xie ${ }^{2}$, Zhurong Cao ${ }^{2}$, Hui Cao ${ }^{1}$

}
${ }^{1}$ Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
${ }^{2}$ Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China
e-mail (speaker): cao_hui@iapcm.ac.cn

A recent proposed novel octahedral spherical hohlraum having 6 cylindrical laser entrance holes (LEHs) with a single laser injection angle at 50 to 60 degree has the potential to provide a robust inherent high radiation symmetry and an efficient energy coupling to the capsule for ignition research with indirect drive [1-4]. In this work, an optimum laser repointing scheme with all laser injection angles in the range of 49.5 to 62 degree is proposed to conduct the 6 -LEH spherical hohlraum experiments on the SG Facility originally designed for the 2-LEH cylindrical hohlraums. This repointing scheme is demonstrated successfully by experiment on the SG facility. Furthermore, a laser repointing scheme is proposed to carry a 6-LEH spherical hohlraum experiment on the National Ignition Facility (NIF), which uses 32 quads of the laser beams and can create a radiation drive peaked at 250 eV inside a $6-\mathrm{LEH}$ spherical hohlraum on the NIF. Finally, an ignition beryllium capsule under a 250 eV radiation drive is proposed.

References
[1]. Ke Lan, Jie Liu, Dongxian Lai, Wudi Zheng, and Xian-Tu He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21, 010704 (2014).
[2]. Ke Lan, Xian-Tu He, Wudi Zheng, and Dongxian Lai, Octahedral spherical hohlraum and its laser arrangement for inertial fusion, Phys. Plasmas 21, 052704 (2014).
[3]. Ke Lan, and Wudi Zheng, Novel spherical hohlraum with cylindrical laser entrance holes and shields, Phys. Plasmas 21, 090704 (2014).
[4]. Ke Lan, Jie Liu, Zhichao Li, Xufei Xie, Wenyi Huo, Yaohua Chen, Guoli Ren, Chunyang Zheng, Dong Yang, Sanwei Li, et al., Progress in octahedral spherical hohlraum studyMatter and Radiation at Extremes 1, 2 (2015).
[5]. Wen Yi Huo, Zhichao Li, Yao-Hua Chen, Xufei Xie, Guoli Ren, Hui Cao, Shu Li, Ke Lan, Jie Liu, Yongsheng Li, et al., First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility, Phys. Rev. Lett. 120, 165001 (2018).

