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A disruption predictor model has been developed by 
using a support vector machine (SVM) [1] based on high-
beta experiment data in JT-60U. Optimal input parameters 
have been extracted by exhaustive search (ES). 
Performance of a disruption predictor has been evaluated 
by input small numbers of parameters such as beta, plasma 
elongation, and ion temperature. 

Disruption in tokamak plasmas is a serious threat for 
a tokamak fusion reactor. Disruption physical mechanism 
has not been clearly identified yet although prediction of 
disruption is inevitable for realization of a tokamak fusion 
reactor. Therefore, there have been studies trying to 
predict occurrence of disruptions based on experiment 
data using machine learning. Here, it should be noted that 
input parameters for machine learning have been given by 
empirical presumption in these studies to date.  

A model of disruption predictor has been developed 
based on high-beta plasma experiment data in JT-60U 
where the beta value was close or above the no-wall beta 
limit [2] in this study. A linear SVM is used as a two-class 
classifier here. The model has been evaluated by treating 
each discharge data as time series data. The dataset 
consists of 23 candidate plasma parameters, that is, 10 
macro plasma parameters (plasma current 𝐼", normalized 
beta 𝛽$, poloidal beta 𝛽%, internal inductance 𝑙', safety 
factor at 95% poloidal flux 𝑞)*, plasma triangularity 𝛿, 
plasma elongation 𝜅, amplitude of magnetic perturbation 
( 𝑛 = 1 ) |𝐵2345| , the ratio of plasma density to the 
Greenwald density limit 𝑓78 = 𝑛9:/𝑛78, ratio of radiated 
power to total input power 𝑓2<= = 𝑃2<=/𝑃'?"@A ), time 
derivative values for seven of macro parameters, and six 
local parameters (velocity of plasma rotation 𝑉A and its 
radial gradient d𝑉A/d𝜌, ion temperature 𝑇' and its radial 
gradient d𝑇'/d𝜌 , normalized radial location of 𝑞 = 2 
rational surface 𝜌/𝑎, magnetic shear 𝑠). 

It is important here to consider not only individual 
distributions of each parameter but also combinational 
effect between parameters. Therefore, the sparse 
modeling method of ES, which searches all possible 
combinations of the input parameters, has been used in 
order to select the optimal combination of input 
parameters. Here, the sparse modeling exploits the 
inherent sparseness in all high-dimensional data to extract 
the maximum amount of information from the data [3]. 
For the N variables, 2I − 1 combinations are possible, 
and the same number of repetitive calculations are 
required in ES. In order to remove the combination 

explosion risk, K-Sparse exhaustive search (ES-K) has 
been applied. This method assumes that the optimal 
combination of explanatory variables is K-sparse, i.e., a 
combination of K out of N parameters is optimal.  

In Fig. 1, the best performance of predictor is shown 
against each K number in ES-K. The performance of 
disruption predictor is closest to the ideal performance 
(perfect prediction of all disruptions and no false alarm) 
when K=7 (i.e., the combination of seven parameters ) , 
and does not show significant difference in  𝐾 = 6 to 10. 
Common key parameters such as 𝛽%, 𝑞)*, 𝜅, 𝑓78, and 
𝑇' have been extracted from combinations in cases of K = 
6 to 8. 

The equation of the decision boundary which divides 
the disruptive region from the non-disruptive region has 
been obtained by the combination of these key parameters.  
This expression is used to evaluate likelihood of 
disruption occurrence. This result will be useful to design  
a secure operational regime and develop control systems 
of fusion reactors. 
 

 
Figure 1: (a) Minimum distance from the ideal predictor 
performance as a function of K number, and (b) the 
corresponding weight diagram representing the 
combination at each point. The color bar in (b) represents 
the weight of each parameter in decision function obtained 
by SVM. 
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