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We have developed an eigenvalue code ERMHDT for
resistive magnetohydrodynamics (MHD) linear stability
analysis of tokamak plasmas including toroidal rotations.
The code has been recently upgraded for free-boundary
calculations. We have achieved good agreements of ideal
MHD growth rates with other existing codes for Solovév
equilibria[1]. Also we have successfully captured that
free-boundary ideal kink modes and fixed-boundary tear-
ing modes are smoothly connected by the free-boundary
resistive MHD stability analysis.

In the plasma region, the ERMHDT code [2] solves
linearized MHD equations including resistivity as well as
equilibrium toroidal plasma rotation. The Ohm’s law is
solved for the vector potential, instead of solving the in-
duction equation for the magnetic field. The linearized
equations are Fourier transformed in time, and thus we
solve an eigenvalue problem under appropriate boundary
conditions.

In the vacuum region, we solve the Laplace equation
for a magnetic scalar potential x. The perturbed magnetic
field in the vacuum region is expressed as B= Vx. This
automatically satisfies V x B = 0. From V - B = 0, we
obtain the Laplace equation VZy = 0.

We impose boundary conditions at the plasma—
vacuum interface and at the metallic wall surrounding the
vacuum region. At the plasma—vacuum interface, we im-
pose continuity of total pressure as well as normal com-
ponent of the perturbed magnetic field. We assume there
is no equilibrium surface current at the interface. At the
metallic wall, we assume that the wall is a perfect con-
ductor and set the perturbed magnetic field normal to the
wall to be zero.

We solve the eigenvalue problem in a weak form.
The weak form is discretized by the Fourier series ex-
pansions in poloidal and toroidal directions, and the finite
element method in a minor radius direction. These proce-
dures are same as the CASTOR code[3]. The discretized
eigenvalue problem is solved either by an inverse power
iteration with an eigenvalue shift, or by the ARPACK
library[4].

The ERMHDT code has a unique feature: we can use
a different basis function for each variable in the finite
element method. It is known that the radial component
of perturbed velocity field should be expressed by a ba-
sis one order higher than the other two components for
avoiding the spectral pollution [5]. Our code can exam-
ine a nice combinations of the basis functions in the view
point of convergence properties as well as magnitudes of
the discretization error.

First, we compared growth rates of ideal MHD modes
for Solovév equilibria with other codes, and have ob-
tained good agreements. A number of codes were com-

pared in [3] for both fixed-boundary and free-boundary
modes, and we compared our results with them. We have
obtained almost identical growth rates for all cases tested.
Second, we have successfully captured continu-
ous transition between free-boundary ideal kink modes
and fixed-boundary tearing modes for large-aspect-ratio,
circular-cross-section and zero-beta tokamak equilibria
[6]. Figure shows the normalized growth rate for the
toroidal mode number n = 1. The aspect ratio is 10. In
the horizontal axis label, g, denotes the safety factor at
the plasma edge. The normalized resistivity (the inverse
of the Lundquist number) is denoted by 7. The growth
rate for the free-boundary ideal kink mode shows the be-
havior well-known in cylindrical plasmas. On the other
hand, a fixed-boundary tearing mode becomes unstable if
a corresponding rational surface exists inside the plasma.
By the free-boundary calculations including resistivity,
these two kinds of modes are smoothly connected.
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Figure 1: The normalized growth rates are plotted versus
nq, for the Shafranov equilibrium, where n is the toroidal
mode number and g, is the edge safety factor. Free-
boundary ideal (n = 0) kink mode and fixed-boundary
tearing mode are connected smoothly.
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