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Likelihood of high-beta disruption has been 
discussed from feature extraction using exhaustive search. 
A support vector machine (SVM) [1] has been used to 
construct a disruption predictor model. 

Establishment of prediction and avoidance of 
disruption is inevitable for realization of a tokamak fusion 
reactor. Since disruption physical mechanism has not been 
clearly identified yet, there have been studies trying to 
predict occurrence of disruptions based on experiment 
data using machine learning. Here, it should be noted that 
input parameters for machine learning have been given by 
empirical presumption in these studies to date.  

In our previous study [2], the concept called “sparse 
modeling” was introduced to establish the method to 
select optimal input parameters. The sparse modeling 
exploits the inherent sparseness in all high-dimensional 
data to extract the maximum amount of information from 
the data [3]. It was shown that the performance of 
disruption prediction was improved by selecting 
appropriate input parameters.  

In the present study, a model of disruption predictor 
has been constructed based on high-beta plasma 
experiment data in JT-60U where the beta value was close 
or above the no-wall beta limit [4]. A linear SVM is used 
as a two-class classifier here. The dataset consists of 23 
candidate plasma parameters, that is, 10 macro plasma 
parameters (plasma current 𝐼" , normalized beta 𝛽$ , 
poloidal beta 𝛽%, internal inductance 𝑙', safety factor at 
95% poloidal flux 𝑞)* , plasma triangularity 𝛿 , plasma 
elongation 𝜅, amplitude of magnetic perturbation (𝑛 = 1) 
|𝐵2345| , the ratio of plasma density to the Greenwald 
density limit 𝑓78 = 𝑛9:/𝑛78, ratio of radiated power to 
total input power 𝑓2<= = 𝑃2<=/𝑃'?"@A ), time derivative 
values for seven of macro parameters, and six local 
parameters (velocity of plasma rotation 𝑉A and its radial 
gradient d𝑉A/d𝜌 , ion temperature 𝑇'  and its radial 
gradient d𝑇'/d𝜌 , normalized radial location of 𝑞 = 2 
rational surface 𝜌/𝑎, magnetic shear 𝑠). 

It is important here to consider not only individual 
distributions of each parameter but also combinational 
effect between parameters. Therefore, the sparse 
modeling method called exhaustive search (ES), which 
searches all possible combinations of the input parameters, 
has been used in order to select the optimal combination 
of input parameters. 

As a result of ES, several parameters have been 
extracted as the key parameters of disruption prediction, 

those are, 𝛽%, 𝑞)*, 𝜅, 𝑓78, and 𝑇'. 
Then these five parameters are highlighted to express 

the linear decision boundary of the classifier, in an 
exponential function. The input of a linear SVM was 
modified to the logarithms of each parameter and the 
calculation was carried again. Consequently, exponential 
expression of the boundary has been obtained as  

1 = 𝑒J.L*𝛽%*.M)𝑞)*NO.PO𝜅J.LQ𝑓78L.*Q𝑇'Q.5PQ. 
The likelihood of occurrence of disruption can be given 
by the obtained exponential expression of decision 
boundary. In Fig. 1, the likelihood is expressed as function 
of 𝛽%  and 𝑓78 . The expression of likelihood of 
disruption provides a hint of physical hypothesis and is 
applicable for design and development of a control system 
of a fusion reactor. 

 
Figure 1: The contour plot of the likelihood of disruption 
against 𝛽% and 𝑓78 when 𝑞)*, 𝜅, and 𝑇'	 are fixed to 
their mean values in the dataset. Notations of the number 
on the contour lines are likelihood of disruption. For 
example, 0.8 means 80 % of likelihood. 
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