3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China

Solar Energetic Electron Events

Linghua Wang Peking University

Solar energetic electron events are the most common solar particle acceleration phenomenon detected in the interplanetary medium. This acceleration, however, has very peculiar characteristics: almost a one-to-one association with type III radio bursts, extreme enrichment of 3He and the presence of low-energy electrons down to <1 keV, plus a close association with coronal mass ejections. Recent studies on solar energetic electron events suggest the occurrence of two distinct electron injections at the Sun: the low-energy (~0.4 to 9 keV) electron injection starts ~9 min before the coronal release of type III radio bursts and lasts for hundreds of minutes, but the high-energy (~ 10 to 300 keV) electron injection starts ~ 8 min after the release of type III bursts and last for $\sim 5-10$ times shorter. The low-energy electron injection are the source of type III radio bursts and it may provide seed particles for the acceleration of high-energy electrons. During their propagation en route to 1 AU, low-energy electrons propagate essentially scatter-free, while high-energy electrons experience pitch-angle scattering with scattering strength increasing with energy (e.g., due to resonant interaction with solar wind turbulence at scale >~ ρ Tp). For solar energetic electron events detected in situ at energies from ~ 1 keV to 200-300 keV, the electron peak differential flux generally fit to a double-power-law function with a steepening above ~ 60 keV.