3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China

Nonlinear Dynamics of Electrons in Excitation of Whistler Waves with Adiabatic and Non-adiabatic Frequency Chirping

Xin Tao¹, Yifan Wu¹, Fulvio Zonca^{2,3}, Liu Chen³

¹ Department of Earth and Planetary Sciences, University of Science and Technology of China ² ENEA C. R. Frascati ³Institute of Fusion Theory and Simulation and Department of Physics, Zhejiang University

⁴Department of Physics and Astronomy, University of California, Irvine

e-mail (speaker): xtao@ustc.edu.cn

It has been established by simulations and theories that nonlinear dynamics of electrons play a key role in frequency chirping of chorus waves. A previous study further demonstrated that this nonlinear interaction is in the non-adiabatic regime, where the nonlinear evolution time scale (t_{NL}) is comparable with the wave particle trapping time (t_{tr}) . The principle of maximization of wave particle power transfer is connected with this non-adiabatic frequency chirping, and has been used to obtain a relation between the chirping rate and wave amplitude for chorus waves. In this talk, we will report whistler waves with adiabatic frequency chirping, where t_{tr} << t_{NL}, and show that the wave particle power transfer is not maximized in this case. Our work should demonstrate the qualitative difference between adiabatic and non-adiabatic frequency chirping, and the importance of identifying the nonlinear wave particle interaction regime in understanding frequency chirping of whistler waves.