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Until recently, the mechanical N-body description of 

microscopic plasma physics was deemed impossible, and 

was substituted with the Vlasovian description, which 

brought a huge amount of theoretical knowledge in this 

physics. However, in the last years the N-body description 

of microscopic plasma physics turned out to be 

manageable, in particular for Landau damping [1,2,3], for 

Debye shielding [1,2,3], and for Coulomb scattering [4]. 

Its application to the first two cases revealed two 

important features of the Vlasovian limit: it is singular 

and it corresponds to a renormalized description of the 

actual N-body dynamics. 

The N-body description of Landau damping and Debye 

shielding uses a spatially uniform granular distribution, 

which is the analog of f0(v) in a Vlasovian setting. This 

granular distribution is made up of monokinetic beams, 

and each beam is a cubic array of particles. It is called 

multi-beam-multi-array. 

The singularity of the Vlasovian limit shows up in various 

ways: (i) The dielectric function of a multi-beam-multi-

array does not converge toward the Vlasovian one, when 

the density of the beam velocities increases, because 

neither zeros nor poles match. (ii) As shown by the echo 

experiment, the van Kampen/beam modes related to a 

given Langmuir wave are actually present in a granular 

plasma. In the N-body approach, the phase mixing of such 

modes plays an essential role for the time reversibility of 

the amplitude of an unstable wave too, while it is absent 

in the Vlasovian calculation. (iii) In this approach, the 

term of initial conditions in Landau’s calculation of 

Langmuir waves is the sum of the ballistic potentials of 

the N electrons. When the density of the beam velocities 

increases, such a sum has no limit, which shows Landau's 

term of initial conditions to be a singular limit, and 

explains while the latter has no physical interpretation. 

(iv) Adding a test particle to the N-body system does not

provide the shielded potential of this particle, in contrast

with the Vlasovian case, (v) In the N-body approach,

Landau damping occurs without requiring the distribution

function to be analytically continuable, like in the usual

Vlasovian approach, which is better for the experimental

observability of the phenomenon.

One of the simplest examples of a renormalized potential 

is the Debye shielded potential. In the N-body approach, 

the Debye shielded potential of a particle is a mean-field 

potential produced by its Coulomb deflections of all other 

particles, which makes explicit what is traditionally called 

“dressed particle”. Both its mean-field and BBGKY 

derivations show that Vlasov equation deals with a mean-

field potential. Therefore, the Vlasovian dielectric 

function is a renormalized version of that of a multi-beam 

multi-array, and a Vlasovian Langmuir wave is the 

renormalized version of a set of beam modes of the N-

body system. The renormalized dielectric function 

enables the calculation of the shielded potentials of the N 

particles of the granular plasma considered here, or of a 

test particle added to a Vlasovian plasma. 

We now sketch the principle of the three derivations of 

Landau damping using the N-body approach: (i) A 

pedestrian, short, yet rigorous, one germane to Kaufman’s 

in a Vlasovian setting [5]. (ii) One showing waves damp 

because of phase mixing à la van Kampen. (iii) One 

showing that the Vlasovian limit is singular and 

corresponds to a renormalized description of the actual N-

body dynamics. These derivations are accessible to 

students who know Newton’s second law and elementary 

calculus. They use neither statistical settings, nor partial 

differential equations. The first one uses neither Laplace 

transform, nor contour integration, nor analytic 

continuation. All three derivations use the one Component 

Plasma model, which considers the plasma as infinite, 

with spatial periodicity L in three orthogonal directions, 

made up of N electrons in each elementary cube with 

volume L3, and with a uniform ionic neutralizing 

background. 

The calculations are similar to Vlasovian ones. They use 

the linearization of N-body dynamics with Coulomb 

interactions, and the perturbation from ballistic orbits of 

electrons of a multi-beam-multi-array. At the end of the 

calculation, one substitutes the discrete sums over 

particles with integrals over a smooth distribution 

function f0(v). As done in the derivations of Vlasov 

equation from N-body dynamics, Coulomb potential is 

smoothed at short distances, which reduces partially the 

strength of collisions. 
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