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   What is the nature of dark matter and dark energy, 
which together make up about 95% of the Universe’s en-
ergy content? One way to address such questions is to in-
vestigate the evolution of cosmic structures on the largest 
observable length scales (Fig. 1). 
  Dark matter constitutes the bulk part of the overall mat-
ter distribution on cosmic scales. Apart from gravitational 
interactions, dark matter appears to be extremely weakly 
interacting, thereby justifying the validity of the collision-
less limit on the considered scales. The gravitational evo-
lution of such a collisionless medium is governed by the 
cosmic Vlasov-Poisson equations, which describe how 
the dark-matter distribution evolves in the six-dimen-
sional phase-space. Noteworthy, the gravitational collapse 
of dark matter leads to regions with extreme densities. 
  The cold dark matter distribution comes with an ini-
tially vanishing (thermal) velocity dispersion and occu-
pies, at all times, only a three-dimensional sheet in 6D 
phase-space. The evolution of this dark-matter sheet can 
be conveniently parametrized by the Lagrangian map 
𝒒	 ⟼ 𝒙(𝒒, 𝜏), which encapsulates the matter trajectories 
from initial position 𝒒 to current position 𝒙(𝒒, 𝜏) with as-
sociated velocity 𝒗 = �̇�(𝒒, 𝜏). Here, 𝜏 is a dimensionless 
time-variable related to the overall expansion of the Uni-
verse, and the overdot denotes the corresponding convec-
tive time derivative. Using this, the Vlasov-Poisson equa-
tions for dark matter take the form 
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where the density 𝜚 is expressed using the Dirac-delta 𝛿=, 
𝜚 = 𝜚>𝒙(𝒒, 𝜏)? = ∫𝛿= [𝒙(𝒒, 𝜏) − 	𝒙(𝒒B, 𝜏)]	d0𝑞B.			(1b)       

  It is standard to solve these equations numerically with 
discretized N-particle approximations, using cosmologi-
cal N-body simulations (see e.g. [2] for a review). Recently, 
also phase-space tessellation methods are used to achieve 
numerically the continuum limit [1, 3]. 
  Analytically or semi-analytically, progress on solving 
the highly non-linear Eqs. (1) to arbitrary high precision 
was slow until fairly recently. 

 
Fig. 1. Simulation result of the dark-matter distribution 
on cosmic scales in our Universe (here: 𝑙HIJ	~10//m) [1]. 

 

  Specifically, the first non-trivial analytical solutions of 
Eqs. (1) have been reported and tested in Refs. [4-6]. Alt-
hough these solutions capture very accurately the emer-
gence of the first density singularity, they become invalid 
immediately afterwards. 
  We have studied in detail the dark-matter phase-space 
at times shortly after the appearance of the first singular 
density, by employing ultra-high resolution N-body simu-
lations and novel theoretical methods [7]. Fig. 2a shows 
the respective phase-space in one space-dimension, fea-
turing single- and multi-beam regions that are spatially 
separated by infinite densities (Fig. 2b). At the same time, 
Fig. 2c shows the corresponding acceleration of particles, 
displaying four non-differentiable sharp features which is 
due to particles experiencing infinite densities. Fig. 2d 
shows the sudden, non-analytic movement of a particle as 
a consequence of an asymmetry in the initial conditions – 
which kicks in only after the first density singularity. 
  Theoretical and numerical tools agree to high precision, 
thereby providing us deep insight into the skeleton of dy-
namical concentrations. Applications of our methods to 
plasma problems, such as the bump-on-tail instability (e.g. 
[8]) or warm plasmas will be discussed. 
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Fig. 2. Numerical (dotted lines) and fully analytical (solid 
lines) predictions of the phase-space after the first density 
singularity (at 𝜏=1) with 1D initial data [7]. 
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