Experimental demonstration of a dusty plasma ratchet rectification and its reversal

Ya-feng He1*, Bao-quan Ai2*, Chao-xing Dai1, Chao Song1, Rui-qi Wang1, Wen-tao Sun1, Fu-cheng Liu1, and Yan Feng3*

1Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
2Guangdong Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006, China
3Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.

The naturally persistent flow of hundreds of dust particles is experimentally achieved in a dusty plasma system with the asymmetric sawteeth of gears on the electrode. It is also demonstrated that the direction of the dust particle flow can be controlled by changing the plasma conditions of the gas pressure or the plasma power. Numerical simulations of dust particles with the ion drag inside the asymmetric sawteeth verify the experimental observations of the flow rectification of dust particles. Both experiments and simulations suggest that the asymmetric potential and the collective effect are the two keys in this dusty plasma ratchet. With the nonequilibrium ion drag, the dust flow along the asymmetric orientation of this electric potential of the ratchet can be reversed by changing the balance height of dust particles using different plasma conditions.

References