Based on a long-distance Coulomb interaction of charged particles in the potential \(U(r) = \frac{\kappa}{r} \), the plasma kinetic equations always meet the divergence because Rutherford differential cross section
\[
\sigma(g, \theta) = \frac{\kappa^2}{4\mu^2 g^4 \sin^4(\theta/2)} = \frac{\kappa^2}{(m\Delta v)^4}
\]
has a singularity at \(m\Delta v = 0 \) here \(\mu \) is reduced mass and \(g \) is the relative velocity of charged particles.

Usually, a cutoff variable should be introduced in order to remove the singularity. The traditional way is to make a cutoff either on impact parameter \(b \) [1] or scattering angle \(\theta \) [2]. A third cutoff variable \(\Delta v \) was introduced for removing the singularity [3] [4].

This presentation will compare the differences of the three kinds of cutoff variables, including impact parameter \(b \), scattering angle \(\theta \) and velocity change \(\Delta v \).

It is shown that the singularity at \(\Delta v = 0 \) cannot be removed by a cutoff on small scattering angle \(\theta (\theta \leq \theta_{min}) \) unless the relative velocity \(g \) is constant. However, in plasma physics, \(g \) can vary from zero to infinite due to varied field particle velocity \(v_p \) even if the test particle velocity \(v \) is a constant. Obviously, the singularity still exists at \(g = 0 \) after the cutoff on \(\theta_{min} \) made. The cutoff on scattering angle \(\theta \leq \theta_{min} \) cannot remove the weak collision effects with both smaller \(g \) and larger \(\theta \).

In fact, scattering angle \(\theta \) has already been proved mathematically to be an incorrect cutoff variable [5]. Similarly, the singularity at \(\Delta v = 0 \) cannot be removed by a cutoff on large impact parameter \(b \) (\(b \geq b_{max} \)) unless \(g \) is constant. Obviously, the singularity still exists at \(g = 0 \) after the cutoff on \(b_{max} \) made. The cutoff on impact parameter \(b \geq b_{max} \) cannot remove the weak collision with smaller \(g \) and smaller \(b \).

Recently, we claim the impact parameter \(b \) is an incorrect cutoff variable. The traditional practice of making the cutoff on small impact parameter \(b \leq b_{min} \) is a total mistake. Small impact parameter is not the reason of divergence as Landau once pointed out [2] 'if the exact formulae are used, then there would, of course, be no divergence at small b'. Landau’s predication is proved by our exact mathematical calculation [6].

The velocity change \(\Delta v \) is so far the only correct cutoff variable that is mathematically proved [4].

Consider a test particle \(\alpha \) in a collection of \(\beta \) particles with a Maxwellian distribution, the nth order Fokker-Planck coefficients are defined as the integral
\[
\left(\Delta v_{k}^{n-2(j+k)} \Delta v_{l}^{2j} \Delta v_{\perp}^{2l} \right)
\]
\[
\nu(\alpha v_{th})^{n}
\]
\[
= \sum_{i=0}^{\infty} \frac{\delta_{n}(y_{min}, u)}{(j-k-i)!}
\]
Where the set of functions \(q_{n}(y_{min}, u) \) is defined as
\[
q_{n}(y_{min}, u) = \frac{2}{\sqrt{\pi}} \int_{y_{min}}^{\infty} e^{-(y+\nu^{-2})} y^{n} dy
\]
\[
\nu = n_{\alpha} v_{th} m_{\alpha} / (2 \mu k_{B} T_{\beta})^{2}, \ y_{min} = \Delta v_{min} / (\nu v_{th}), \ a = 2\pi / m_{\alpha}
\]
The energy transfer moments are defined as
\[
\langle \epsilon \rangle = \int \epsilon f_{0}(v_{\alpha}, T_{\alpha}) g \sin 0 \theta d\theta d\phi dp dv_{\beta}
\]
The arbitrary high order of energy transfer rate can be derived by the cutoff \(\Delta v \geq \Delta v_{min} \) as
\[
\langle \epsilon \rangle = \int \epsilon f_{0}(v_{\alpha}, T_{\alpha}) g \sin 0 \theta d\theta d\phi dp dv_{\beta}
\]
\[
\omega = n_{\alpha} n_{\beta} v_{\alpha} p_{\perp} / (m_{\alpha} k / 2 \mu k_{B} T_{\beta})^{2}, \ \bar{\epsilon} = 4\mu^{2} k_{B} / (T_{\beta} - T_{\alpha}) m_{\alpha} p_{\beta}
\]

References