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In the absence of irreversible processes, the 

equations of motion governing the evolution of physical 

systems, such as ideal fluids and plasmas, take the form 

of a Hamiltonian system: 

𝐹𝑡 = {𝐹, 𝐻}. (1) 

Here, 𝐹 is an observable, 𝐻 the Hamiltonian function 

(the energy of the system), and {∘,∘} the Poisson bracket. 

Due to Liouville’s theorem, the structure of Hamilton’s 

equations is incompatible with the thermodynamic 

principle of entropy growth, i.e. it cannot account for 

irreversible changes in the state of a system.  

    The metriplectic bracket is an algebraic construction 

that aims at reconciling Hamiltonian mechanics with 

thermodynamics by generalizing the Poisson bracket of 

equation (1) as follows: 

𝐹𝑡 = (𝐹, 𝐻, 𝑆) = {𝐹, 𝐻} + [𝐹, 𝑆]. (2) 

In this notation, (∘,∘,∘) is the metriplectic bracket, 𝑆 a 

second generating function representing the entropy of 

the system, and [∘,∘] a dissipative bracket, i.e. a bilinear 

non-negative symmetric product. The Hamiltonian 𝐻 

and the entropy 𝑆  are chosen so that the following 

conditions hold: 
{𝑆, 𝐻} = [𝐻, 𝑆] = 0. (3) 

Equation (3) ensures that the first and second laws of 

thermodynamics are satisfied: 

𝐻𝑡 = {𝐻, 𝐻} + [𝐻, 𝑆] = 0, 
𝑆𝑡 = {𝑆, 𝐻} + [𝑆, 𝑆] = [𝑆, 𝑆] ≥ 0. 

(4) 

Here, we used the alternativity of the Poisson bracket, 
{𝐻, 𝐻} = 0 ∀𝐻, and the non-negativity of the dissipative 

bracket, [𝑆, 𝑆] ≥ 0 ∀𝑆.  

    Aim of the present study is to show that, given a 

general Hamiltonian system, there exists a 

Fokker-Planck equation describing the evolution of the 

associated statistical ensemble with the metriplectic form 

of equation (2). Our construction starts with a 

microscopic isolated Hamiltonian system in an 𝑛 

dimensional domain Ω ⊂ ℝ𝑛  with coordinates 

(𝑥1, … , 𝑥𝑛) and evolving according to  

 �̇�𝑖 = {𝑥𝑖 , ℎ} = ℐ𝑖𝑗ℎ𝑗 , (5) 

with ℎ  and ℐ𝑖𝑗  the Hamiltonian function and the 

Poisson operator respectively, and ℎ𝑗 = 𝜕ℎ/𝜕𝑥𝑗. Then, 

we consider an ensemble of 𝑁  elements obeying 

equation (5), and let them interact. The interaction results 

in fluctuations 𝛿ℎ of the individual energy ℎ, and a 

dissipative force 𝑭 = 𝐹𝑗∇𝑥𝑗 , so that the equation of 

motion of an element of the statistical ensemble becomes   

 �̇�𝑖 = ℐ𝑖𝑗(ℎ𝑗 + 𝛿ℎ𝑗 − 𝐹𝑗). (6) 

Recalling that ℐ is a Poisson operator, the associated 

invariant measure 𝐽𝑑𝑥1 … 𝑑𝑥𝑛 , with 𝐽  a Jacobian 

weight, can be obtained by application of the 

Lie-Darboux theorem: in a sufficiently small 

neighborhood where the rank of ℐ is 2𝑟 = 𝑛 − 𝑚, there 

are local coordinates (𝑝1, … , 𝑝𝑟 , 𝑞1, … , 𝑞𝑟 , 𝐶1, … , 𝐶𝑚) 

such that 

 𝐽𝑑𝑉 = 𝑑𝑝1 … 𝑑𝑝𝑟𝑑𝑞1 … 𝑑𝑞𝑟𝑑𝐶1 … 𝑑𝐶𝑚. (7) 

Then, the invariant measure (7) is used to enforce the 

ergodic hypothesis on the Casimir leaves defined by  
{𝒙 ∈ Ω ∶  𝐶1 = const.  , … , 𝐶𝑚 = const. }. In particular, 

energy fluctuations 𝛿ℎ  are represented by Gaussian 

white noise processes 𝚪 = Γj∇𝑥𝑗 on the Casimir leaves, 

while the friction force 𝑭 is assumed proportional to the 

phase space velocity (5) through a friction coefficient 𝛾: 

 �̇�𝑖 = ℐ𝑖𝑗(ℎ𝑗 + 𝐷1/2Γ𝑗 + 𝛾ℐ𝑗𝑘𝐻𝑘). (8) 

Here, 𝐷 is the diffusion coefficient, which is related to 

𝛾 through the inverse temperature 𝛽 = 2𝛾/𝐷. Denoting 

by 𝑓(𝑥1, … , 𝑥𝑛) the distribution function of the 

ensemble on the invariant measure 𝐽𝑑𝑉, we assume that 

the coordinate system has been chosen so that 𝐽 = 1. 

Then, in such coordinate system, the stochastic 

differential equation (8), translates into the following 

Fokker-Planck equation [1]: 
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It can be shown [2] that equation (9) possesses the 

metriplectic structure (2) with Poisson bracket 
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and dissipative bracket 
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Furthermore, in the limit of thermodynamic equilibrium 

𝑡 → ∞, solutions of (9) converge to 

 lim
𝑡→∞

𝑓 = 𝑍−1exp(−𝛽𝐻 − 𝜇𝑘𝐶𝑘),   𝑍, 𝜇𝑘 ∈ ℝ. (13) 

The theory generalizes to infinite dimensional 

Hamiltonian systems. 
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