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Raising the repetition rate of driving laser pulses can 
straightforwardly increase the average current of 
accelerated electrons from laser wakefield acceleration 
(LWFA), such that a high radiation yield can be achieved 
for developing advanced X-ray radiography and 
radiation therapy. To date, 200-mJ, 1030-nm pulses with 
a duration of 1.1 ps can be produced from a thin-disc 
Yb:YAG system at a repetition rate of 5 kHz [1]. By 
introducing these 1030-nm, ps-level pulses with a 
technique of post spectral broadening and pulse 
compression, such as the gas-filled multipass cell [2] or 
the multiple-plates continuum [3], pulses with a peak 
power < 4 TW can be acquired to drive LWFA at kHz 
frequencies with the goal to increase the average electron 
current by 2-3 orders of magnitude higher than 
conventional LWFA ≤ 10 Hz.  

In principle, a normalized vector potential��� � 2 or 
a laser intensity��� � 	
��������is required to drive 
LWFA in the 3D nonlinear regime [4]. In order for the 
few-TW LWFA to be successful, a gas target capable of 
providing a plasma density ��� � 	
������� and 
inducing a strong self-focusing of the pump pulse has to 
be invented. This self-focusing effect is characterized by 
the critical power ��� � 	� ������� ���, depending o 
the plasma critical density � ! " #��$%&

��'$
� and the 

laser frequency %&. Our experiences indicate that �� ~ 
(���� is favorable for conducting the few-TW LWAF. As 
the transverse radius ) of the self-focused pump pulse 
gradually reduces to *) + ,- (typically 3 - 5 μm in 
operation), a greatly increased laser intensity is realized 
for driving plasma waves. 

One of our approaches for realizing a stable source of 
tens-of-MeV electrons from LWFA is based on the recent 
experimental result achieved when ~ 3 TW laser pulses 
are focused onto a pulsed thin gas jet of dense nitrogen. 
As shown in Fig. 1(a), the thin, high-density nitrogen gas 
jet was produced from the gas flow out of a 152-μm 
diameter orifice under a high backing pressure. The 
nozzle consists of an orifice module mounted on a gas 
tube with the gas flow controlled by a pulsed valve 
underneath. Density of the gas atoms/plasma in the target 
region is varied by adjusting the backing pressure. The 
produced plasmas are measured by the probe of 
shadowgraphic images with a wavefront sensor, from 
which the plasma electron density distributions of the 
nitrogen target can be retrieved as shown in Fig. 1(b). 
When a 3.2-TW pulse is introduced with a backing 
pressure of 600 psi, the produced plasma density is fitted 
into a Gaussian profile with a width � 860 μm (in full 
width at half maximum, FWHM) and a peak density � 
*./0	
�������. The generated electron beam exhibited 
relatively small divergence properties for θx � 20 mrad 

and θy � 10 mrad in FWHM as shown in Fig. 1(c). 
Under this condition, electrons were obtained with 
quasi-monoenergetic spectrum peaked at � 11 MeV with 
an energy spread � 17 MeV in FWHM and a bunch 
charge � 22 pC (>5 MeV) as shown in Fig. 1(d); more 
importantly, they are produced with satisfactory 
reproducibility under ~17% energy and ~15% charge 
stability. The experiments verified that such a scheme is 
a viable choice for generating stable tens-of-MeV 
electrons with few-TW laser pulses at a high-repetition 
rate. 
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Figure 1 (a) Structure of the gas nozzle and the pump 
beam path. (b) The spatial phase shift of a 
shadowgraphic image, the retrieved plasma electron 
density distribution, and the density line profile of a 
nitrogen plasma produced by 3.2-TW laser power and 
600-psi backing pressure. (c) Spatial profiles of 
accelerated electrons and (d) 10 consecutive images for 
the dispersed electrons generated with 3.2-TW pulses. 
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