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Bright high-energy radiation sources have a wide
range of applications from fundamental research to
medical imaging and industrial radiography. At present,
widely used synchrotrons and X-ray free-clectron lasers
(XFELSs) can deliver X-ray pulses with peak brilliance in
the range of 10'°2* and 10’32 photons s™' mm ™2 mrad 2
per 0.1% bandwidth (BW), respectively. However, they
are normally limited to photon energies ranging from a
few keV to hundreds of keV. In addition, the size and
cost of these large facilities limit access to the sources.

Recent progress in laser-plasma accelerators has led to
compact ultrashort X/y-ray sources [1, 2] that can deliver
peak brilliance comparable with synchrotron sources [3].
However, it is well known that a low-density plasma is
beneficial for accelerating trapped electrons to high
energies because the dephasing length scales as 1/n,
while strong betatron oscillations preferentially occur in
a high-density plasma that can greatly enhance the
energy of emitted photons. This contradiction seriously
limits betatron radiation in the wakefield to photon
numbers in the range 107® and photon energy in the
hundreds of keV range, limiting their wide applications.

To overcome these limitations, we propose a novel
scheme to produce collimated beams of y-rays with
photon energies tunable up to GeV and peak brilliance
reaching up to XFEL level, by using a multi-PW laser

pulse in a two-stage wakefield accelerator [4] (see Fig. 1).

This results in the efficient generation of a tens-nC
multi-GeV electron beam in the first stage. Subsequently,
both the laser and electron beams enter into a
higher-density plasma region in the second stage, where
high-energy photons are emitted when the energetic
electrons interact with the highly intense quasi-static
electromagnetic fields self-induced in this stage. More
than 10'? y-ray photons/shot are produced with energy
efficiencies beyond 10% for photons above 1 MeV, and
with unprecedented peak brilliance of over 10%¢ photons
s”' mm~2 mrad 2 per 0.1% bandwidth at 1 MeV, as shown
in Fig. 2. This makes them unique high-energy photon
sources suitable for many applications and may offer the
basis for future compact GeV photon colliders [5-9].

Fig. 1. (A) Schematic diagram of the two-stage scheme.
(B) 3D view of the y-ray radiation in laser-driven plasma
wakefield using a 3D PIC simulation.
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Fig. 2. The laser-plasma accelerator-radiator setup and
3D PIC simulation results.
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