Edge turbulent transport towards the L-H transition in ASDEX Upgrade and JET-ILW

N. Bonanomi¹, C. Angioni¹, C. F. Maggi², P. A. Schneider¹, the ASDEX Upgrade Team*, the EUROFusion MST1 Team** and JET Contributors***

¹ Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
² Culham Centre for Fusion Energy, Abingdon, OX14 3DB, UK
*See the author list of H. Meyer et al 2019 Nucl. Fusion 59 112014
**See the author list of H. Meyer et al 2017 Nucl. Fusion 57 102014
***See the author list of E. Joffrin et al. 2019 Nucl. Fusion 59 112021

e-mail (speaker): nbonan@ipp.mpg.de

Edge turbulence in L-mode plasmas plays a key role in the understanding of the L-H transition as well as of some ELM-free high-confinement regimes such as the I-mode. This work combines observations in ASDEX Upgrade and JET-ILW and related gyrokinetic turbulence simulations. We explore both the role of the isotope mass as well as that of the temperature and density profiles in driving or stabilizing the edge turbulence. Recent experiments in ASDEX Upgrade and JET-ILW have given some new indications on these two aspects. For both devices pairs of D and H L-modes with matched profiles and with heating power scans have been performed [1,2]. It is observed that the normalized logarithmic gradients R/Lₜₑ and R/Lᵦᵣ are free to evolve towards the L-H transition while, despite the changes in nₑ and in its gradient, R/Lₙₑ shows more limited variation. A local gyrokinetic approach is demonstrated to be applicable to the study of L-mode edge turbulence, and provides critical new insights in the understanding of these observations [3]. Results with the GENE code [4] reproduce quantitatively the experimental fluxes and show that the edge high collisionality favors instabilities strongly affected by the parallel electron dynamics [3]. The corresponding linear term in the gyrokinetic equations, (cₖ/mₑ)⁰.⁵, leads to increased transport at lower mass, an effect which is magnified when electromagnetic effects are included.

Moreover, a competition has been found between R/Lₚₑ, R/Lₑᵦ and R/Lₙₑ, in driving the turbulence. In contrast, the concomitant increases of the equilibrium ExB shear, consistent with measurements, and of the self-generated zonal flow shear stabilize the turbulence. These results suggest a path towards edge turbulence stabilization in which the evolution of Tᵦ, connected with an increased ion heat flux, leads to increased shearing without driving the turbulence.

Acknowledgements: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References