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 Model-based between-shots and real-time actuator 
trajectory planning will be critical to achieving high 
performance and disruption-free operation in present-day 
tokamaks, ITER, and future fusion reactors. Such tools 
require models that are accurate enough to facilitate useful 
decision making and fast enough to enable optimization 
algorithms to meet between-shots and real-time deadlines. 
Since state-of-the-art integrated modeling codes are too 
computationally intensive, an accelerated simulation 
capability has been developed for NSTX-U by applying 
machine learning techniques to both empirical data and 
TRANSP simulations, enabling profile and equilibrium 
predictions at real-time relevant time scales. The approach 
includes machine learning surrogates for high-fidelity 
TRANSP modules to accelerate calculations by orders of 
magnitude while maintaining high fidelity. For quantities 
not well modeled by TRANSP modules, machine learning 
is applied to an experimental database. Results provide a 
glimpse of the potential impact of accelerated modeling 
on scenario optimization and control, motivating further 
development of models and applications. 
Surrogate models for TRANSP calculations: In 
TRANSP, the influence of neutral beam injection on 
plasma heating, current drive, and torque is calculated by 
the Monte Carlo code NUBEAM. An accelerated 
surrogate model for NUBEAM was developed in [1] from 
a database of results for plasma conditions relevant to the 
NSTX-U operating space. Figure 1 shows good agreement 
between NUBEAM heating profiles and those predicted 
by the neural network. Importantly, the neural network 
only takes ~100 microseconds to evaluate compared to 
seconds or minutes for the original code. Surrogate 
models have also been trained for parameters used in the 
magnetic and momentum diffusion equations. 
Empirically identified models: Rather than accelerating 
calculation of transport coefficients through the use of 
neural networks as done in [2,3], we explore an 
empirically driven approach to predicting profile 
evolution. Since the shape of the temperature and density 
profiles are typically observed to be `stiff', i.e., insensitive 
to the detailed distribution of sources, a neural network is 

trained on empirical data to predict the electron 
temperature and pressure profile shapes as a function of 
plasma current, plasma boundary shaping parameters, 
volume-averaged electron density and pressure as input. 
Volume averaged stored energy and density are then 
predicted from empirical confinement scaling expressions. 
Actuator trajectory optimization: The fast execution 
time of the machine learning accelerated scenario model 
is exploited to enable rapid optimization of actuator 
trajectories. A combination of genetic optimization and 
sequential quadratic programming is used to obtain 
solutions [4]. Example results of applying the 
optimization approach to track target trajectories for fast 
ion pressure and electron pressure are shown in Figure 2. 
Future work will include further development of 
optimization techniques, and real-time applications. 
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Figure 2: Optimized beam power and plasma current (left) for tracking fast ion (center) and electron pressure (right) 

profile evolution. 

	

 

Figure 1: TRANSP calculated profiles of beam 
heating to electrons compared with the results 
of the NubeamNet neural network model. 
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