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The feature of radiative collapse has been extracted 
from high-density plasma experiments in Large Helical 
Device (LHD) with a sparse modeling technique. The 
extracted features have been used to explore the 
underlying physics of the radiative collapse and to 
develop a machine learning predictor of the collapse. 

In stellarator-heliotron plasma, radiative collapse is 
one of the most critical issues that limits the operational 
density. The Sudo scaling is known well as the scaling law 
of density limit, which suggests that the balance between 
heating power and radiative power loss is a key together 
with robust confinement capability such as plasma 
volume and magnetic field[1]. However, contribution of 
other operational conditions to the occurrence of radiative 
collapse are hidden behind the expression of the Sudo 
scaling, such as impurity contamination and wall 
conditions. 

In the present study, machine-learning classifier that 
distinguishes plasmas in the close-to-collapse state in 
which the radiation collapse is likely to occur and in the 
stable state has been constructed based on experiment data 
in LHD. In the experiment, the hydrogen and deuterium 
gas-puff and was used as fueling and the magnetic 
configuration was fixed at the magnetic axis position 𝑅!" 
of 3.6 m with B=1.375 T or 2.75 T. The surveyed line 
averaged density and heating power range up to 
1.5 × 10#$	m%& and 15 MW, respectively. The data was 
labeled into stable and close-to-collapse states according 
to the density exponent 𝑥 = (�̇�'!(/𝑃'!()/(𝑛1̇)/𝑛1)), which 
is a criterion of thermal instability[2]. Here, the dots mean 
time derivatives. 

Using the constructed classifier, feature of radiative 
collapse has been extracted using exhaustive search (ES), 
which is one of the sparse modeling techniques. The 
sparse modeling is one of the frameworks of data-driven 
science and it exploits the inherent sparseness in all high-
dimensional data to extract the maximum amount of 
information from the data[2]. In ES, all possible 
combinations of input parameters are compared each 
other to find out the optimal one. 

As a result of feature extraction, line averaged 
electron density 𝑛1), line emissions of CIV and OV, and 
electron temperature at plasma edge 𝑇),)(+)  have been 

selected as key parameters of radiative collapse. Using 
those parameters, collapse likelihood has been calculated 
corresponding to distance from the boundary between 
stable and close-to-collapse states obtained by machine 
learning. Figure 1 shows a typical discharge with radiative 
collapse in LHD. In this discharge, the collapse likelihood 
increased and reached one before the plasma collapsed. 

 
Fig.1 An example of collapsed discharge in LHD. (a) Density 
exponent and collapse likelihood, (b) line averaged electron 
density and electron temperature at plasma edge, (c) diamagnetic 
energy and radiated power are shown. 
 

The likelihood has been verified with about 500 
discharges in LHD and over 85% of radiative collapses 
have been predicted successfully at least 30 ms before 
occurrence. Also, using those extracted parameters, 
mechanisms of occurrence of radiation collapse have been 
discussed focusing on radiation loss of light impurities at 
plasma edge, especially outside the last closed flux 
surface.  
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