4th Asia-Pacific Conference on Plasma Physics, 26-31Oct, 2020, Remote e-conference

The influence of impurities on the ion temperature measured by a retarding field analyzer

Junren Shao¹, Hai Liu¹, Yuhong Xu¹, Jie Huang¹, Haifeng Liu¹, Xianqu Wang¹, Xin Zhang¹, Jun Cheng¹ and Changjian Tang^{1, 2}

¹ Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

² Physics Department, Sichuan University, Chengdu 610065, China

e-mail: Junren_Shao@my.swjtu.edu.cn

Abstract

In the magnetically confined plasma, the ion temperature (T_i) is one of the basic characteristic parameters. Hence, how to develop an effective method to measure the T_i is still an open issue for the plasma researches. The retarding field analyzer (RFA) is considered as one of the most effective tools to measure the ion temperature (T_i) in the plasma boundary [1]. However, there are some inaccuracies in the measured T_i by the RFA due to impurities in the plasma. Kŏcan and Gunn [2] have simulated the influence of impurities on the ion temperature measured by the RFA, and found that the simulated T_i is about 20% lower than real one due to the impact of impurities. However, in their simulation, only a single impurity has been considered. The effect of the charge and mass of diverse impurities on the T_i measurement has not yet been mentioned.

In this work, the influences of impurities on the T_i measured by RFA have been analyzed in hydrogen isotope plasmas with both low-Z and high-Z impurities [3]. The analytical results show that T_i is underestimated in H^+ (also D^+ and T^+) plasma when the fuel ion charge is taken as the charge number and the analyzed T_i in H^+ plasma are all larger than that in D^+ and T^+ plasmas, exhibiting the isotope effect. With the increase of the concentration of low-Z impurity ($\eta_1 = n_l/n_f$, n_l and n_f are the densities of the impurity ion and the main ion, respectively), the analyzed T_i decreases and the T_i is about 20% underestimated with η_1 ~12%. Comparison of different charge numbers and masses of low-Z impurities shows that larger charge number and smaller mass of low-Z impurities lead to the analyzed T_i being more underestimated. The high-Z impurities impose almost no impact on the T_i because of their small current contribution. Moreover, experimental measurements of T_i by the RFA and edge rotational diagnostic (ERD) system [4] have been compared, which displays good agreement with the analytical results.

References

- [1] Pitts R. A. and Chavan R., 2003 Rev. Sci. Instrum. 74 4644
- [2] Kočan M. and J. P. Gunn, 2011 Plasma Phys. Control. Fusion 53 085016
- [3] Shao J. et al, 2020 Plasma Phys. Control. Fusion **62** 025027
- [4] Cheng Z. F. et al, 2014 Rev. Sci. Instrum. 85 11E423