Full penetration of odd-parity rotating magnetic field antenna driven Field-Reversed Configuration

Wenqiu Li
Princeton Plasma Physics Laboratory, Princeton University, Princeton, USA
e-mail (speaker): beiste@163.com

As a potential magnetic fusion system candidate, the rotating magnetic field (RMF), which operates under the frequency conditions $\omega_i << \omega << \omega_c$ (where ω_i and ω_c are the ion and electron cyclotron frequency corresponding to the RMF intensity, ω is the RMF frequency), has been employed to generate and sustain a field reversed configuration (FRC) with high-β value compact toroid [1-3]. Further, by employing an odd-parity RMF (RMFe) antenna [4], based on the Princeton Field-Reversed Configuration (PFRC) experiment [5], S.A. Cohen et al found that compared to the even-parity RMF (RMFe) antenna [6], the ions and electrons can be significantly heated due to its closed magnetic field topology [7-9]. By employing X-Ray spectra method, C. Swanson et al found that [10, 11] the electron temperature can be heated up to several hundreds of electron volts in in the PFRC-2 hydrogen plasma.

In this paper, by employing the two-fluid model, based on a RMFo driven FRC model, under given parameters: plasma column radius $r_c = 5$ cm, axial static magnetic field $B_s = 300$ G, perpendicular RMF magnetic field $B_0 = 12$ G, RMF frequency $f_{RMF} = 4$ MHz, radially uniform plasma density $n_0 = 10^{23}$ cm$^{-3}$, electron temperature $T_e = 200$ eV, ion temperature $T_i = 1$ eV, the RMF penetrate criterion, $\gamma_e > 1.12(1 + 0.12(\lambda - 6.5)^{1/4}), \lambda > 6.5$ (where γ_e and λ are the RMF drive parameter and penetration parameter, respectively) [12], is satisfied, simulation results as shown in Fig.1 and 2 show that under this condition the RMF eventually fully penetrated into the core plasma region after a few RMF periods and a FRC is formed.

ACKNOWLEDGEMENTS
We would like to express our sincere gratitude to our department laboratory colleagues for their advice, discussions.

REFERENCES