Full penetration of odd-parity rotating magnetic field antenna driven Field-Reversed Configuration

Wenqiu Li

Princeton Plasma Physics Laboratory, Princeton University, Princeton, USA e-mail (speaker): beiste@163.com

As a potential magnetic fusion system candidate, the rotating magnetic field (RMF), which operates under the frequency conditions $\omega_{ci} \ll \omega \ll \omega_{ce}$ (where ω_{ci} and ω_{ce} are the ion and electron cyclotron frequency corresponding to the RMF intensity, ω is the RMF frequency), has been employed to generate and sustain a field reversed configuration (FRC) with high- β value compact toroid [1-3]. Further, by employing an odd-parity RMF (RMFo) antenna [4], based on the Princeton Field-Reversed Configuration (PFRC-2) experiment [5], S.A. Cohen et al found that compared to the even-parity RMF (RMFe) antenna [6], the ions and electrons can be significantly heated due to its closed magnetic field topology [7-9]. By employing X-Ray spectra method, C. Swanson et al found that [10, 11] the electron temperature can be heated up to several hundreds of electron volts in in the PFRC-2 hydrogen plasma.

In this paper, by employing the two-fluid model, based on a RMFo driven FRC model, under given parameters: plasma column radius $r_p = 5$ cm, axial static magnetic field $B_a = 300$ G, perpendicular RMF magnetic field $B_0 = 12$ G, RMF frequency $f_{RMF} = 4$ MHz, radially uniform plasma density $n_0 = 10^{13}$ cm⁻³, electron temperature $T_e = 200 \text{ eV}$, ion temperature $T_i = 1 \text{ eV}$, the RMF penetrate criterion, $\gamma_c > 1.12\lambda (1+0.12(\lambda-6.5)^{0.4}), \lambda > 6.5$ (where γ_c and λ are the RMF drive parameter and penetration parameter, respectively) [12], is satisfied, simulation results as shown in Fig.1 and 2 show that under this condition the RMF eventually fully penetrated into the core plasma region

Fig.1 Axial component magnetic field at the midplane

Fig.2 Toroidal plasma current at the midplane

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to our department laboratory colleagues for their advice, discussions.

REFERENCES

- H. A. Blevin, P. C. Thonemann, Nucl. Fusion Suppl. Part 1, 55 (1962)
- [2] W. N. Hugrass, I. R. Jones, M. G. R. Phillips, Nucl. Fusion, 19, 1546 (1979)
- [3] A. J. Knight, I. R. Jones, Plasma Phys. Controlled Fusion, 32, 575 (1990)
- [4] S. A. Cohen, B. Berlinger, C. Brunkhorst, et al. Phys. Rev. Lett., 98, 145002 (2007)
- [5] S.A.Cohen, C. Brunkhorst, A. Glasser, et al. AIP Conf. Proc., Am. Inst. Phys., 1406, 273 (2011)
- [6] R. D. Milroy, C. C. Kim, C. R. Sovinec, Phys. Plasmas, 17, 062502 (2010)
- [7] A. H. Glasser, S. A. Cohen, Phys. Plasmas, 9, 2093 (2002)
- [8] A. S. Landsman, S. A. Cohen, A. H. Glasser, Phys. Rev. Lett., 96, 015002 (2006)
- [9] S. A. Cohen, A. S. Landsman, A. H. Glasser, Phys. Plasmas, 14, 072508 (2007)
- [10] C. Swanson, P. Jandovitz, S. A. Cohen, AIP Adv., 8, 025222 (2018)
- [11] B. M. Alessio, C. Swanson, K. R. Torrens, et al. Bull. Am. Phys. Soc., 64 (2019)
- [12] M. Ohnishi, W. Hugrass, M. Fukuhara, et al. Phys. Plasmas, 15, 104504 (2008)