

5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference

Effect of finite temperature in counter differential rotation equilibrium of

```
two-fluid plasma
```

Y. Nakajima¹, T. Okada¹, H. Himura¹ and A. Sanpei¹ ¹ Department of Electronics, Kyoto Institute of Technology e-mail (speaker): m0621027@edu.kit.ac.jp

Recently, the interesting works by using the non-neutral plasma for which all particles have the same sign of charge are not only to study itself but also to apply to production and confinement of multi-component plasma. There are some projects using two non-neutral plasmas such as efforts to create electron–positron pair plasma or to confine two-fluid plasma consisting of lithium ion (Li^+) plasma and electron (e⁻) one.^[1]

presentation, In my the property of the two-dimensional (2D) counter differential rotation equilibria^[2] of Li⁺ plasma and e⁻ one with finite temperatures T_i and T_e confined cylindrically by a single trap in the uniform magnetic field B is described. In the equilibrium, Li⁺ and e⁻ plasmas exhibit corresponding rigid rotations around the plasma axis with the different angular velocities ω_{ri} and ω_{re} like a two-fluid plasma. It is previously shown that cold two-component plasma support in the differential rotation equilibrium. If the ion and e^- plasma have low temperature T_i and T_e of near 0 eV, the pressures are negligible, and so the rotation is simply driven by **B** and the self-electronic potential ϕ_s or electronic field $E = -\nabla \phi_s$ which the difference between the uniform density of ion plasma n_{i0} and e^- plasma n_{e0} produces. Considering $\boldsymbol{E} \times \boldsymbol{B}$ drift v_{ϕ} , it is consistent that the ion plasma and e⁻ plasma rotate in same direction. This is such a simple case that each of ω_{ri} and ω_{re} can be calculated by n_{i0} and n_{e0} . However,

Figure 2. Radial profiles of $\phi_s(r)$ and $n_{\sigma}(r)$ for a set of equilibrium solutions. The conducting wall is at r = a.

the unrealistic assumption of $T_i = T_e = 0$ eV is required to achieve the equilibrium. No solutions to the 2D differential rotation equilibrium with the finite temperature of T_i and T_e have been published yet, in our knowledge.

As shown in Figure 1, we obtain one of the solutions of the equilibrium equation calculated numerically. In the calculation, n_e is always larger than n_{i0} , which means the system considered in this work is still a kind of non-neutral plasmas. Resultantly, a bell-shaped negative potential well exists in the plasmas; E is also non-uniform in the whole system. Nonetheless, both Li⁺ and e⁻ plasmas exhibit corrensponding rigid rotations around the plasma. Another remarkable thing is that the e⁻ plasma rotates in the same direction as that of $E \times B$, while the Li⁺ plasma counter-rotates overall, as shown in Figure 2. This counter-rotation is attributed to the contribution from the diamagnetic drift of the Li⁺ plasma v_{di} owing to its finite ion pressure.

References

[1] H. Himura, Nucl. Instrum. Methods. Phys. Res. B, 811: 100-107 (2016).

[2] Y. Nakajima, H. Himura, A. Sanpei, submitted to *J. Plasma Phys.* (2021).

Figure 1. Radial profiles of the azimuthal components of v_{ϕ} (black dashed curves), $v_{d\sigma}$ (red dotted curves for Li⁺ plasma and blue for e⁻ plasma), and v_{σ} (two solid red and blue lines) for the set of solutions shown in Figure 1.